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ABSTRACT

The general goal of audio matching is to identify all audio ex-
tracts of a music collection that are similar to a given query
snippet. Over the last years, several approaches to this task
have been presented. However, due to the complexity of au-
dio matching the proposed approaches usually either yield
excellent matches but have a poor runtime or provide quick
responses albeit calculate less satisfying retrieval results. In
this paper, we present a novel procedure that combines the
positive aspects and efficiently computes good retrieval re-
sults. Our idea is to exploit the fact that in some practi-
cal applications queries are not arbitrary audio snippets but
are rather given as extracts from the music collection itself
(intra-collection query). This allows us to split the audio
collection into equal sized overlapping segments and to pre-
compute their retrieval results using dynamic time warping
(DTW). Storing these matches in appropriate index struc-
tures enables us to efficiently recombine them at runtime.
Our experiments indicate a significant speedup compared to
classical DTW-based audio retrieval while achieving nearly
the same retrieval quality.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Systems—Multimedia data-

bases; H.5.5 [Information Interfaces and Presenta-

tion]: Sound and Music Computing
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Audio matching, dynamic time warping, music retrieval

1. INTRODUCTION
Digital audio formats in combination with today’s storage

capabilities enabled the development of digital audio col-
lections on a grand scale. Thereby, content-based retrieval
techniques are becoming increasingly important. For au-
dio files content-based retrieval can be categorized into four

∗Is now with Queen Mary, University of London, UK.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIRUM’12, November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1591-3/12/11 ...$15.00.

types. In audio identification, for a given audio snippet, the
exact audio recording it originates from has to be determined
whereas in version identification or cover song retrieval all
different recordings of the queried piece of music (e.g., played
by different musicians or using a different instrumentation)
are to be retrieved. In audio matching, rather than whole
recordings, audio extracts that are similar to a query snip-
pet are reported as retrieval results. The last retrieval type
is category-based music retrieval, where the recordings in
the music collection are categorized or clustered w.r.t. some
predefined cultural or musicological category, e.g., genre or
mood. Given a recording, category-based retrieval can then
propose similar songs to the user. For details on the different
approaches and an extensive bibliography we refer to [6].

In this paper, we focus on the audio matching scenario.
Here, queries are formed (at least implicitly, see Section 2)
by audio examples of arbitrary length and the retrieval re-
sults should be arbitrary audio extracts from the collection
that present some similarity with the query. In particu-
lar, one recording might even contain several hits. There-
fore, to find all occurrences of a given query, a compari-
son of the query with all feasible contiguous subsegments
of the collection is necessary. Two prominent approaches
for solving this task are diagonal matching (or linear scan)
and (subsequence) dynamic time warping (DTW), see [9]
for details on both approaches. In diagonal matching, a
sequential warping-free comparison of the query with sub-
segments of the collection (having the same length) is per-
formed. By using appropriate feature representations, local
variations (e.g., in timbre, harmony, instrumentation) can be
canceled out. However, the approach is constraint to com-
paring sequences of equal length and therefore does not con-
sider tempo variations. To allow for global tempo variations
of ±40%, Kurth and Müller propose the retrieval of several
time stretched versions of the query [8]. In contrast, subse-
quence DTW enables the comparison of feature sequences
with different length by performing non-linear warping (see
Section 3.1). Thereby, DTW allows for both global and local
tempo variations. In addition, a higher robustness towards
local variations (e.g., insertions and deletions) is achieved.

Unfortunately, the good retrieval quality comes at the cost
of DTW being rather slow.1 One approach for speeding up
the calculation is the imposition of global constraints on the
admissible warping paths [9]. However, in the context of
subsequence DTW-based audio matching this approach is
not applicable. Besides, the runtime of classical diagonal
matching becomes problematic for large datasets as well.

1Given two sequences of length N and M , the computational
complexity of DTW is O(NM).



For both approaches, the pre-calculation of a retrieval index
has proven to be a reasonable approach for handling large
collections. Kurth and Müller propose an indexing approach
for diagonal matching that significantly speeds up the re-
trieval process while causing only minor quality losses [8].
The general idea is to use a set of reference feature vectors
(codebook vectors) and to store their occurrence positions
in the database using inverted lists. During retrieval the
matches can be determined using shifted versions of the rel-
evant inverted lists in combination with fast list intersec-
tions. Another approach widely used in audio identification
and version identification is indexing based on locality sensi-
tive hashing (LSH) (see, e.g., [2, 5, 14]). After converting the
audio data into some feature representation, the feature se-
quence of the audio collection is segmented into equal-sized
subsequences (shingles) which are subsequently stored us-
ing LSH. During retrieval, the feature sequence of a query
is split into shingles as well. For each query shingle all shin-
gles with the same hash value are retrieved from the index
before applying some merging approach to determine valid
matches (e.g., Casey et. al. [2] count the number of matching
shingles while Yang [14] employs the Hough Transform).
The issue with DTW is that it does not obey the trian-

gular inequality and thus cannot be indexed without loss
of quality. Instead, several approaches suggest the intro-
duction of a lower bounding function (LBF) for DTW that
enables a fast filtering of match candidates and can be in-
dexed using multidimensional indexing methods (e.g., R-
tree), e.g., [4, 7, 12, 15]. After index look-up these can-
didates are subsequently verified by calculating the DTW-
distance. Agrawal et. al. [1] combine the LBF-based in-
dexing approach with the previously mentioned shingling to
deal with subsequence matches (i.e., the query is part of
one of the documents). However, all of these approaches
are constraint to DTW-comparisons of the query (or query
shingles) with equal-sized subsequences from the database
and thus weaken the benefits of DTW-based matching.
In conclusion, diagonal matching achieves short response

times but lacks the flexibility of DTW to search for arbitrar-
ily time-warped (globally and locally) versions of a query.
Similarly, the discussed approaches to indexing of DTW can
only retrieve matches of the same length as the query and
require online verification of candidates via DTW calcula-
tion. For large candidate lists this step can potentially re-
sult in long response times. In this paper, we propose a
new procedure whereby the advantages of index-based re-
trieval and subsequence DTW are combined. To this end,
we utilize the fact that in practical applications queries are
often given as audio extracts from the music collection itself
(intra-collection query), see Section 2. As we will see, this
leads to a simple, yet very efficient and effective retrieval ap-
proach that combines the efficiency of indexing techniques
with the retrieval quality of classical DTW-based match-
ing. Evidently, indexing the retrieval results for all possible
queries—which would be the obvious first idea—is not fea-
sible for larger collections. Instead, we follow the shingling
approach and split the dataset into overlapping segments
of equal length, calculate the corresponding audio matches,
and store them as search index. During query processing
the indexes of the segments covering the query are merged
to calculate the retrieval result. Depending on the size of
the music collection we observed speedup factors between
42 and 311 in comparison to DTW-based audio matching.
The remainder of this paper is organized as follows. In the

Figure 1: Schematic example for score-audio synchronization.
The calculated alignments allow for cross-modal audio retrieval
where the score is used for query formulation (red selection).

next section, applications for intra-collection audio matching
are discussed. In Section 3, we present the proposed index-
based audio matching procedure. Section 4 discusses various
experiments on retrieval speed and result quality before we
conclude the paper with an outlook on future work.

2. APPLICATIONS
Usually, libraries and museums that provide access to

their digital audio collections (typically consisting of thou-
sands of audio tracks) do not allow visitors to connect their
USB devices to upload queries. Therefore, the users are
constrained to searching within the given collection using ex-
tracts of the available audio as queries (i.e., intra-collection
search). The method proposed in this article was designed
specifically with such library systems in mind and aims at
providing fast and accurate retrieval results for these intra-
collection query scenarios. This way, our procedure allows
users, for example, to quickly find and access repetitions of
a music extract in all available recordings of the underlying
piece or to search a database for pieces of music that borrow
ideas from other pieces.

Intra-collection retrieval is particularly interesting as it
allows for creating convenient user interfaces for query for-
mulation. For example, a library system can offer rich audio
visualizations (e.g. spectrogram, structure analysis) to assist
the user in selecting a query within the audio collection. Fur-
thermore, for a given music recording, digital libraries often
provide corresponding scanned score sheets. In these cases,
using score-audio synchronization techniques, each position
in the score can be linked to a corresponding position in
an audio recording [9], see Figure 1. Thus, queries can be
formulated using an intuitive score-based interface [3] where
the computed linking information is used to automatically
translate the queries into the audio domain (cross-modal au-

dio retrieval).
To relax the restriction on intra-collection queries, the

system could easily be extended by an audio identification
step [6, 13]. In such a preprocessing step, a given external
audio snippet could be tested for membership with the col-
lection. If this is the case, the according audio snippet from
the collection could be used instead (to benefit from intra-
collection search). Otherwise, the system could fall back
on diagonal matching (accepting inferior results) or clas-
sical DTW-based audio matching (accepting long response
times). Our experiments in Section 4 in combination with
the reported performance of audio identification suggest that
this approach would still yield orders of magnitude better re-
sponse times than classical DTW-based audio matching (for
queries that are part of the collection).
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Figure 2: Distance function with respect to a query consisting of the beginning of Symphony No. 9, Molto Vivace by L. v. Beethoven
in an interpretation conducted by R. Kubelik. For two different interpretations of the Molto Vivace, the distinct peaks at the three
match locations in each document are visible (vertical red lines). The horizontal blue line indicates the ranking threshold θ = 0.225. As
expected, for a different piece (Piano Sonata No.1 by Beethoven), no matches are reported.

3. INDEXING AND RETRIEVAL METHOD
In this section, we first describe the DTW-based audio

matching procedure we employ. Our approach closely resem-
bles the methods described in [8, 9]. Afterwards we explain
the index creation and the corresponding retrieval process
to handle intra-collection queries.

3.1 Audio Retrieval
Let Q be a query audio clip and let (D0, D1, . . . , DN ) be a

collection of audio recordings. To simplify matters, we cre-
ate a large dataset document D by concatenating all docu-
mentsD0, D1, . . . , DN , where we keep track of the document
boundaries in a supplemental data structure. Then, the goal
of audio matching is to find all contiguous subsegments in
D that are similar to the given query Q.
For this purpose, Q and D are transformed into suitable

feature sequences Q = (Q0,Q1, . . . ,QK) ∈ FK+1 (with
|Q| = K + 1) and D = (D0,D1, . . . ,DL) ∈ F

L+1, re-
spectively. Here, F denotes the underlying feature space.
In our implementation, we chose the CRP (chroma DCT-
reduced log pitch) features introduced by Müller and Ew-
ert [10] using their implementation provided by the Chroma
Toolbox [11]. In our procedure, we employ non-overlapping
features with a window size of one second. For CRP-features
the feature space F consists of all elements in [−1, 1]12

which have euclidean length 1.2 We define the cost mea-
sure c : F ×F → [0, 2] on F as c(x, y) := 1−〈x, y〉 (which is
the cosine measure for normalized vectors). Then, we define
a distance function ∆D

Q : [0 : L] → [0,∞] between Q and D

that locally compares Q to subsequences of D

∆D
Q(ℓ) = |Q|−1 min

a∈[0 : ℓ]
(DTW(Q,D(a : ℓ)). (1)

Here, D(a : ℓ) denotes the subsequence ofD starting at index
a and ending at index ℓ and DTW(Q,D(a : ℓ)) denotes the
DTW distance between Q and D(a : ℓ) with respect to the
cost measure c. For details on the efficient computation of
this distance using dynamic programming, we refer to [9,
Section 4.4].
Each entry ∆D

Q(ℓ) of the distance function measures the
distance between Q and the subsequence D(aℓ : ℓ) of D,
where aℓ = aℓ(Q,D) denotes the minimizing index in equa-
tion (1), see Figure 2 for an example. As we apply DTW, it
is usually true that |Q| 6= |D(aℓ : ℓ)|.
The best match between Q and D is now encoded by

the index ℓ0 ∈ [0 :L] minimizing ∆D
Q. The distance value

∆D
Q(ℓ0) is also referred to as the ranking value of the match

2We distinguish between [0 : n] := {x ∈ Z | 0 ≤ x ≤ n} and
[0, n] := {x ∈ R | 0 ≤ x ≤ n}.

corresponding to the feature sequence D(aℓ0 : ℓ0). As the
goal is to find all audio extracts that are similar to the
query, the calculation then continues by searching for the
second best match. But first a neighborhood of ℓ0 is ex-
cluded from further considerations to avoid overlaps be-
tween matches. In our implementation, we exclude the
region [aℓ0 : ℓ0 + 0.85 · (ℓ0 − aℓ0)] by setting the respective
∆D

Q-values to ∞. Then, to find subsequent matches, the

above procedure of identifying the minimum of ∆D
Q is per-

formed repeatedly until the minimal distance exceeds a spec-
ified distance threshold θ (we use θ = 0.225) or until a cer-
tain number of matches is obtained. This way, we iteratively
compute all matches of Q in D

H(Q) :=
{

(aℓ, ℓ, r) | ℓ ∈ [0 :L], r = ∆D
Q(ℓ) ≤ θ

}

.

By employing a DTW-based distance function, a high ro-
bustness towards global and local tempo variations as well
as small local variations is achieved. However, for large
datasets, the described sequential scanning approach results
in long response times. For applications where the query
originates from within the dataset, we therefore propose
the calculation of an audio matching index that allows for
fast DTW-based audio matching in larger datasets. The
general idea is to split the dataset into small overlapping
segments, perform the previously described audio matching
procedure, and to store the result lists as retrieval index.
During retrieval, those lists are used to efficiently determine
the matches for a given query.

3.2 Index Creation
Given a segment length λ > 0 and a step size τ ≤ λ, the

segmentation SD of the feature sequence D is defined as

SD = (S0, S1, . . . , SM )

where M = ⌈ |D|−λ

τ
⌉ and Sm = D(mτ :mτ + λ − 1) for

m ∈ [0 :M − 1] and SM = D(Mτ : |D| − 1), see Figure 3. If
not stated otherwise, we use λ = 20, τ = 5.

For each segment Sm, m ∈ [0 :M ], we perform the audio
matching procedure presented in Section 3.1 and store the
respective retrieval results as inverted lists

L(m) = {m} ×H(Sm)

containing all tuples (m, aℓ, ℓ, r) with ℓ ∈ [0 : L] and r =
∆D

Sm
(ℓ) ≤ θ.

The computational complexity of this preprocessing step
is O(λ ·M · |D|) = O(|D|2). Therefore, its calculation be-
comes rather time consuming for larger collections. How-
ever, the index creation can be accelerated significantly by
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Figure 3: Segmentation of D (λ = 5, τ = 3). For the approx-
imate feature representation D(4 : 11) of query Q (red) the best
fitting segment subsequence is SD(1 : 2). In a sense, this best fit-
ting coverage corresponds to minimizing the symmetric difference
between the red and the blue squares projected onto the D-strip.

employing distributed processing. Furthermore, a given in-
dex does not need to be recalculated if a new audio track
DN+1 is added. Instead, two steps are required. First, the
inverted lists for all segments in DN+1 have to be calculated
(using (D0, D1, . . . , DN+1) as music collection). Second, all
segments in (D0, D1, . . . , DN ) need to be queried in DN+1

to update their respective inverted lists. In this way, the
computational complexity for adding a new documentDN+1

(usually: |DN+1| ≪ |D|) is O(|DN+1| · |D|).

3.3 Retrieval Method
As the given queryQ is a subsegment ofD, we can approx-

imate its feature representation by a subsequence D(i : j) of
D, with 0 ≤ i < j < |D|. Then, we determine the sub-
sequence SD(i∗ : j∗) of segments in SD through which the
query feature sequence D(i : j) is properly represented. We
use a best fitting coverage of the query by setting i∗ = ⌊ i

τ
⌉

and j∗ = ⌊ j+1−λ

τ
⌉, see Figure 3.

Subsequently, the inverted lists L(m),m ∈ [i∗ : j∗], of all
segments in SD(i∗ : j∗) are loaded. Using these, we will
now calculate the index-based (approximate) set of matches

H̃(Q).3 To this end, we employ a similar approach as in [8].
A fundamental observation is that for a subsegment D(u : v)
to be a valid retrieval result, a sufficient number of inverted
lists L(m),m ∈ [i∗ : j∗] need to contain a match whose start
and end points lie within [u : v]. To determine such subseg-
ments D(u : v) efficiently, we exploit the fact that the regions
of elements in the individual inverted lists belonging to the
same match can be made overlapping by shifting them ap-
propriately.4 We therefore define the p-shifted version of a
list L(m), m ∈ [0 :M ], as

L(m)− p := {(m, aℓ − p, ℓ− p, r) | (m, aℓ, ℓ, r) ∈ L(m)}

and create the list of all shifted segment retrieval results

B(Q) =
⋃

m∈[i∗ : j∗]

L(m)−mτ.

Using B(Q) we will now calculate H̃(Q) in two steps. First,
we determine all regions D(u : v) that contain sufficiently
overlapping elements of B(Q) (Algorithm 1). Second, the
ranking value of these regions is calculated and their eligi-
bility as retrieval results is tested (Algorithm 2).

3For i∗ = j∗, H̃(Q) = L(i∗).
4As we use DTW, the regions are of varying length and therefore
do not become identical after list shifting (in contrast to [8]).

Algorithm 1 merge regions

1: I(Q)← ∅
2: k ← 0
3: while k < |B(Q)| do
4: search maximum t ∈ [0 : |B(Q)| − 1− k] with

(1) |ak+t − ak| < λ

(2) ∀p < t : |ak+p+1 − ak+p| ≤ λ/4
5: if t > 0 then

6: I(Q)← I(Q) ∪ {(k, k + t)}
7: end if

8: k ← k + |Sk,k+t|
9: end while

Algorithm 2 verify candidates

1: H̃(Q)← ∅
2: for all (u, v) ∈ I(Q) do

3: Ru,v :=
(

∑

j∈Su,v
rj
)

· (j∗ − i∗) · |Su,v|
−2

4: if
[

Ru,v ≤ θ and |Su,v| ≥
1
2
(j∗ − i∗)

]

or
[

Ru,v · (j
∗ − i∗)−1 · |Su,v| < 0.1 · θ

]

then

5: H̃(Q)← H̃(Q)∪

{(

min
t∈[u : v]

(aℓt), max
t∈[u : v]

(ℓt), Ru,v

)}

6: end if

7: end for

For a match (m, aℓ, ℓ, r) ∈ L(m), let aℓ := aℓ −mτ and

ℓ := ℓ−mτ represent themτ -shifted versions of the start and
end positions of the match, aℓ and ℓ, respectively. By sorting
B(Q) by the shifted start indexes of the matches, we now
derive the sequence B(Q) = ((sk,ak, ℓk, rk))k∈[0 : |B(Q)|−1]

with ak := aℓk , ℓk := ℓk and a0 ≤ a1 ≤ . . . ≤ a|B(Q)|−1.
Further, sk denotes the segment index the according match
originates from and rk = ∆D

Ssk
(ℓk) is its ranking value.

Then, we define Su,v := {su, su+1, . . . , sv}, u ≤ v ∈
[0 : |B(Q)| − 1], as the duplicate-free set of segment indexes
between u and v. In Algorithm 1, we now step through
B(Q) and combine successive entries to form the set I(Q)
of merged retrieval candidate regions. Here, only those seg-
ments that overlap sufficiently with the other segments of
a candidate region are added to this region (see, line 4 in
Algorithm 1 for the exact overlap-conditions).

The ranking value of a region in I(Q) is defined as the av-
erage mean of the ranking values from the partial matches
in the segments S(i∗ : j∗) (only one ranking value per seg-
ment is used). In addition, we apply a penalty factor
(j∗ − i∗) · |Su,v|

−1 whereby the ranking value of matches
with few contributing segments is degraded, see line 3 in
Algorithm 2.

In line 4 of Algorithm 2, the eligibility of a match as a
retrieval result for Q is tested. To this end, we apply two
conditions. First, matches formed by at least half the seg-
ments present in the query with a ranking value Ru,v ≤ θ
are valid matches. However, by means of the second condi-
tion, we also allow partial matches with |Su,v| <

1
2
(j∗ − i∗)

that have a very good ranking.

4. EXPERIMENTS
In this section, we report on a series of experiments to

indicate how the proposed index-based audio matching ap-
proach for intra-collection retrieval performs in comparison
to the DTW-based approach. First, we show that through



query C1 C2

length (s) DTW DTW≤θ

index DTW1,000
index DTW DTW≤θ

index DTW1,000
index

25 3.15 0.13 0.08 19.51 0.28 0.06
45 4.45 0.15 0.08 24.43 0.30 0.08
65 5.79 0.20 0.11 30.35 0.45 0.11
85 7.23 0.23 0.12 34.84 0.51 0.13
105 8.85 0.27 0.15 39.81 0.61 0.16
125 10.63 0.29 0.16 45.02 0.66 0.18

Table 1: Comparison of the response times (in seconds) for

DTW, DTW≤θ

index and DTW1,000
index.

indexing the response times decrease considerably. After-
wards, we examine the quality of the reported matches.

4.1 Datasets
For the presented evaluations, we prepared two collections

featuring audio recordings of Western classical music. The
first dataset C1 comprises 444 tracks containing four differ-
ent interpretations of all piano sonatas by L. v. Beethoven
resulting in 44.7 hours of audio. While the first collection
is constrained to piano music, the second set C2 (C2 ⊃ C1)
additionally contains orchestral music and several songs for
voice and piano (e.g., Winterreise by F. Schubert). In par-
ticular, C2 contains six recordings of the Symphony No. 9

by L. v. Beethoven, two of which are piano versions based
on the piano transcription by F. Liszt. Overall, the second
collection is significantly larger as it comprises 2, 012 audio
tracks yielding a total of 141 hours of music.

4.2 Query Length and Response Time
In this experiment, we compare the performance of the

classical DTW-based audio matching procedure described
in Section 3.1 to the performance of our index-based match-
ing approach (DTWindex) by measuring the average response
times. All of the proposed algorithms were implemented in
the Matlab (7.11.0) environment and tests were run on an
Intel Core 2 Quad Core (2.83 GHz) PC with 4 GB of main
memory under MS Windows 7 (64-bit). Besides comparing
the two approaches, we focused on three aspects. First, the
impact of the query length on the runtime by using audio
snippets with durations of 25− 125 seconds as queries. Sec-
ond, the impact of the size of the data set on the response
time by performing searches for all queries in C1 as well
as C2. Third, we compare the runtime of the index-based
method for indexes consisting of all retrieval results with a
ranking value ≤ θ (DTW≤θ

index) to indexes containing at most

the best 1, 000 matches of each segment (DTW1,000
index). For

each setup, we performed 24 runs. The measured average
runtimes are depicted in Table 1.
For DTW≤θ

index the speedup factors range from 25 (25s

query in C1) to 80 (45s query in C2) whereas for DTW1,000
index

the speedup factors increase even further and go from 42 to
311. In addition, comparing the runtimes for C1 and C2,
the scalability of the index-based procedure w.r.t. the size
of the audio collection becomes apparent. While for DTW
the response times for queries in C2 on average increase by
a factor of 5 (compared to C1), with DTW1,000

index they remain
nearly constant.
Furthermore, the evaluations show that with increasing

query length both approaches decrease in their performance.
However, for the 125s queries DTW1,000

index still achieves re-
sponse times below 0.2s. Finally, with respect to the run-
time a clear advantage of applying a top-1, 000 strategy—

C1
λ = 10 λ = 20

EM T 20 T 30 EM T 20 T 30
Q1 1.00 0.45 0.53 1.00 0.80 0.70
Q2 1.00 0.60 0.53 1.00 0.75 0.67
Q3 1.00 0.55 0.40 1.00 0.65 0.60
Q4 1.00 0.40 0.33 1.00 0.65 0.60
Q5 1.00 0.65 0.50 1.00 0.70 0.53
Q6 1.00 0.55 0.50 1.00 0.80 0.77
Q7 0.88 0.60 0.43 1.00 0.85 0.80
Q8 0.75 0.30 0.23 1.00 0.80 0.67

∅ 0.95 0.51 0.43 1.00 0.75 0.67

Table 2: Recall of DTW≤θ

index for different segment length λ in re-
lation to the matches of DTW-based audio matching. The results

of DTW1,000
index coincide with the depicted values.

especially for larger datasets—over the threshold-based in-
dexing becomes apparent (up to 4.5 times faster responses).

In a further set of experiments we evaluate the com-
petitiveness (in terms of runtime) of our approach with
DTW indexing methods applying a lower bounding function
(e.g., [7, 15]). For this purpose, we calculated the average
runtime of the required candidate verification step, which
yields a lower bound on the total runtime. Using queries
of 25 − 125s length the verification of 20 candidates re-
quired 0.15−0.24s. For 100 candidates we observed response
times between 0.66 to 1.22s. These results suggest that our
method is a competitive alternative for intra-collection audio
matching scenarios.

All in all, the presented evaluations show a significant ef-
ficiency boost by applying the proposed index-based audio
matching method. However, to access its practical usability
one should also examine the quality of the created matches.

4.3 Matching Quality
We present a variety of experiments on the performance

of DTWindex in terms of the matching quality. As the pro-
posed method is intended as a fast index-based approxima-
tion of DTW-based audio matching, we compare the gener-
ated matches to those calculated by DTW-based matching.

In the first set of experiments, we evaluate the impact of
the segment length λ used during index creation (see Sec-
tion 3.2) on the quality of the retrieval results. On the one
hand, the selected segment length obviously directly influ-
ences the minimal query length processable by DTWindex.
Therefore, too large values will render the approach use-
less for real-life applications. On the other hand, too short
queries usually result in piles of insignificant matches. We
chose to compare the performance of DTWindex for λ = 10
and λ = 20. In our experiment, we use C1 as data col-
lection and take the first 21 measures of the Piano Sonata

No. 1, Op. 2, 1 by L. v. Beethoven as query. This extract
is played twice during each of the four performances in C1

(due to a repetition). We use both the first and the sec-
ond repetition in each performance as query, thereby re-
ceiving a total of eight queries (Q1 − Q8) with durations
between 21 and 25 seconds. Obviously, for each query the
collection contains eight exact matches. The classical DTW
approach ranks them as the top eight matches (no matter
which query Q1 − Q8 is used). The column labeled “EM”
in Table 2 presents the recall values for those exact matches
using DTWindex (i.e., ratio of exact matches occurring in
the top eight matches). While for λ = 10 some queries do
not result in a perfect recall, no qualitative difference to the
classical DTW approach is observable for λ = 20.

Furthermore, we evaluate the recall for the 20/30 best



C2
DTW≤θ

index DTW1,000
index

EM T 20 T 30 EM T 20 T 30
Q1 1.00 0.75 0.63 1.00 0.75 0.63
Q2 1.00 0.70 0.60 1.00 0.70 0.60
Q3 1.00 0.85 0.70 1.00 0.85 0.70
Q4 1.00 0.75 0.63 1.00 0.75 0.63
Q5 1.00 0.80 0.83 1.00 0.80 0.83
Q6 1.00 0.75 0.77 1.00 0.75 0.77
Q7 1.00 0.65 0.87 1.00 0.65 0.87
Q8 1.00 0.70 0.63 1.00 0.70 0.63

∅ 1.00 0.74 0.71 1.00 0.74 0.71

Q9 1.00 0.90 0.63 1.00 0.90 0.67
Q10 1.00 0.90 0.63 1.00 0.90 0.67
Q11 1.00 0.90 0.67 1.00 0.90 0.63
Q12 1.00 0.90 0.63 1.00 0.90 0.67
Q13 1.00 0.90 0.67 1.00 0.95 0.67
Q14 1.00 0.95 0.70 1.00 0.90 0.73

∅ 1.00 0.91 0.66 1.00 0.91 0.67

Table 3: Recall values for DTW≤θ

index and DTW1,000
index.

ranked queries (i.e., ratio of 20/30 best matches calculated
by DTW also belonging to the 20/30 best retrieval re-
sults when using DTWindex). The results are shown in the
columns “T 20” and “T 30” of Table 2. Here, the impact
of the segment length on the result quality becomes even
more distinct. While with λ = 10 only one half of the top
20 matches was retrieved, for λ = 20 an accordance of 0.75
could be achieved. This supports our assumption that too
short queries seem to result in a lot of insignificant matches
which consequently reduce the overall retrieval accuracy.
In Section 4.2, we showed that the truncated index

DTW1,000
index attains up to 4.5 times better response times com-

pared to DTW≤θ

index (see Table 1). In the next experiment,
we now compare the performance of the two indexes in terms
of matching quality. Furthermore, we will extend our exper-
iments to the larger collection C2 and introduce a second set
of queries to illustrate the effect of larger collections and the
chosen query on the retrieval results.
Again, we use Q1 − Q8 as queries and perform audio

matching on C1 (see Table 2, results for λ = 20) as well
as C2 (see Table 3). For C2 we additionally use audio snip-
pets from the beginning of Symphony No. 9, Molto vivace

by L. v. Beethoven as queries (Q9 −Q14, 70− 76s). As the
beginning of the Molto vivace is repeated twice during the
piece, each interpretation contributes three exact matches,
thereby generating a total of 18 exact matches for Q9−Q14

(six of which are extracts of the piano recordings).
For Q1−Q8 (both, in C1 and in C2) no differences between

the matching results of DTW1,000
index and DTW≤θ

index could be
detected. In contrast, subtle difference could be observed
for Q9 − Q14. However, the overall performance remains
unchanged (see Table 3).
The presented results, in combination with the runtime

evaluations discussed in the previous section, suggest that
DTW1,000

index with λ = 20 constitutes a good trade-off between
speed, processable query length, and performance.

5. OUTLOOK
We introduced a novel audio matching procedure for intra-

collection queries. The basic idea is to split the collection
into segments of equal length, to then calculate the corre-
sponding matches and to store them as indexes. During
retrieval, those indexes are accessed and joint accordingly
to determine the audio matches for the given query.
In the presented approach segment matches are merged

employing conditions only depending on the segment length
λ. Instead, one could imagine conditions that also consider
the overlap τ and the query length. In the future, we intend
to test alternative merging and ranking approaches with the
goal of further improving the matching quality.

In addition, we plan on incorporating the proposed match-
ing procedure into our digital library system probado [3].
We expect this to result in a significant gain in retrieval
quality for intra-collection queries without sacrificing good
response times.
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