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Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
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Abstract

The field of music information retrieval (MIR) aims at developing techniques and tools
for organizing, understanding, and searching multimodal information in large music collec-
tions in a robust, efficient and intelligent manner. In this context, this thesis presents novel,
content-based methods for music synchronization, audio matching, and source separation.

In general, music synchronization denotes a procedure which, for a given position in one
representation of a piece of music, determines the corresponding position within another
representation. Here, the thesis presents three complementary synchronization approaches,
which improve upon previous methods in terms of robustness, reliability, and accuracy.
The first approach employs a late-fusion strategy based on multiple, conceptually different
alignment techniques to identify those music passages that allow for reliable alignment
results. The second approach is based on the idea of employing musical structure analysis
methods in the context of synchronization to derive reliable synchronization results even
in the presence of structural differences between the versions to be aligned. Finally, the
third approach employs several complementary strategies for increasing the accuracy and
time resolution of synchronization results.

Given a short query audio clip, the goal of audio matching is to automatically retrieve all
musically similar excerpts in different versions and arrangements of the same underlying
piece of music. In this context, chroma-based audio features are a well-established tool as
they possess a high degree of invariance to variations in timbre. This thesis describes a
novel procedure for making chroma features even more robust to changes in timbre while
keeping their discriminative power. Here, the idea is to identify and discard timbre-related
information using techniques inspired by the well-known MFCC features, which are usually
employed in speech processing.

Given a monaural music recording, the goal of source separation is to extract musically
meaningful sound sources corresponding, for example, to a melody, an instrument, or a
drum track from the recording. To facilitate this complex task, one can exploit additional
information provided by a musical score. Based on this idea, this thesis presents two novel,
conceptually different approaches to source separation. Using score information provided
by a given MIDI file, the first approach employs a parametric model to describe a given
audio recording of a piece of music. The resulting model is then used to extract sound
sources as specified by the score. As a computationally less demanding and easier to
implement alternative, the second approach employs the additional score information to
guide a decomposition based on non-negative matrix factorization (NMF).

Keywords: Audio processing, music information retrieval, music synchronization, align-
ment, audio matching, source separation, non-negative matrix factorization, parametric
models.
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Chapter 1

Introduction

During the last decade, worldwide digitization efforts have resulted in a tremendous growth
of digital music collections, which comprise music-related documents of various types and
formats. In particular for Western classical music, a piece of music is often associated
with multiple audio recordings, several editions of sheet music, or various symbolic score
representations (MusicXML, Lilypond, MIDI). Each type of representation describes a
piece of music from a very specific perspective. As a visual representation, sheet music
specifies the most important musical parameters of a piece in a compact and human read-
able form. This way, sheet music serves as a basis for musicians to create a performance
and for musicologists to study a piece in terms of harmonic, rhythmic, and formal as-
pects. Computer-readable symbolic score representations are typically employed in music
production systems to control the way synthesizers and samplers create sound. Finally,
audio recordings describe physical properties of sound and capture the aural impression
of a listener during a musical performance.

A major goal in the field of music information retrieval (MIR) is to develop techniques
that allow users to conveniently access, explore, and experience music in all its different
facets. In particular, as discussed in [119], combining different types of representations
allows for novel possibilities to interact with the music. For example, the regular playback
of a CD recording can be enriched by automatically presenting the corresponding score
for the underlying piece of music. Additionally highlighting the current audio playback
position in the score discloses the semantic link between both representations and allows
for navigating in the recording in an intuitive and visual way. Furthermore, combined
with a Google-like search engine, the user can further explore the entire music collection.
For example, after selecting a few bars in a score or a short passage from a CD recording,
the system would present a ranked list of passages from the collection, which are similar
to the query in terms of harmonic, rhythmic, or timbral aspects. Moreover, an interface
might allow the user to intuitively select arbitrary note groups in the score, which are
automatically emphasized or attenuated in the recording in real-time. This way, the user
can easily identify and focus on the constituent parts of a piece of music by highlighting
notes corresponding to an instrument, a specific motif, a musical voice, or the left or the
right hand of a piano piece. One goal of this thesis is to introduce or improve techniques
underlying such a future multimodal music player. Key challenges are to organize, under-
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2 CHAPTER 1. INTRODUCTION

stand, and structure the vast amount of content in modern digital music collections and
to identify semantic relationships across the various music representations and formats.
In this context, the thesis presents fully automated content-based methods which extract
structured information directly from the raw input data without the need for any manual
intervention. For the application scenario described above, three types of methods are of
particular importance: methods for music synchronization, audio matching, and source
separation.

Music synchronization denotes a procedure which, for a given position in one representa-
tion of a piece of music, determines the corresponding position within another represen-
tation. In computing such alignments, recent approaches assume that the versions to be
aligned correspond to each other with respect to their global and local structure. How-
ever, in real-world scenarios, this assumption is often violated [48, 120]. For example, for
a popular song there often exist various structurally different album, radio, or extended
versions. Or, in classical music, different recordings of the same piece may exhibit omis-
sions of repetitions or significant differences in solo cadenzas, in ornamentation, or in the
interpretation of trills and arpeggios. In this thesis, two novel approaches are presented
that allow for automatically identifying the reliable parts of alignment results. Instead
of relying on one single strategy, the idea of the first approach is to employ a late-fusion
method that combines several types of conceptually different alignment strategies within
an extensible framework. Looking for consistencies and inconsistencies across the synchro-
nization results, the method automatically classifies the alignments locally as reliable or
critical. Focusing on structural differences between the versions to be aligned, the idea
of the second approach is to perform a single structure analysis for both versions simulta-
neously. Such a joint structure analysis reveals the repetitions within and across the two
versions and discloses the reliable alignment parts.

After identifying the reliable alignment parts, one typically employs classical music syn-
chronization techniques to align corresponding passages on a finer temporal level. In this
context, strategies based on chroma features have turned out to yield robust alignment
results, see [40] for a discussion. Such chroma-based approaches typically yield a reason-
able synchronization quality that suffices for music browsing and retrieval applications.
However, the alignment may not be accurate enough to capture fine nuances in tempo
and articulation as needed in applications such as performance analysis or audio editing.
Other synchronization strategies yield a higher accuracy for certain classes of music by
incorporating onset information, but suffer from a high computational complexity and a
lack of robustness. This thesis introduces several strategies on various conceptual levels to
increase the time resolution and quality of the synchronization result without sacrificing
robustness and efficiency. First, novel audio features are introduced that combine the tem-
poral accuracy of onset features with the robustness of chroma features. Then, it is shown
how these features can be used within an efficient and robust multiscale synchronization
framework.

A second group of methods considered in this thesis is often subsumed under the notion
of audio matching. Based on the query-by-example paradigm, these methods allow for
creating Google-like search services for music documents. More exactly, given a short
query clip, the goal of audio matching is to automatically retrieve all excerpts from all
recordings within a given music collection that musically correspond to the query. In this
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context, chroma-based features have turned out to be a powerful mid-level representation.
In particular, their main strength lies in their robustness to variations in timbre and in-
strumentation as they appear in different interpretations, cover songs, and arrangements
of a piece of music, see also [121]. This thesis describes a novel procedure that further
enhances chroma features by significantly boosting the degree of timbre invariance with-
out degrading the features’ discriminative power. The underlying idea is based on the
generally accepted observation that the lower mel-frequency cepstral coefficients (MFCCs)
are closely related to timbre. Now, instead of focusing on the lower coefficients as done
for many MIR applications, they are discarded in the proposed method such that only
the upper coefficients remain. Furthermore, using a pitch scale instead of a mel scale
allows for projecting the remaining coefficients onto the twelve chroma bins. As the the-
sis will show, the resulting CRP (chroma DCT-reduced log pitch) features outperform
various state-of-the art chroma features in the context of audio matching and retrieval
applications.

A third group of methods considered in this thesis are methods for the decomposition of a
monaural audio recording into musically meaningful sound sources, a task often referred
to as source separation. To extract sources corresponding to a melody, a bassline, or an
instrument track, classical methods exploit specific spectral and temporal properties of
the given target source. For example, a melody is often characterized by its dominance in
dynamics, while a given instrument can typically be identified by its specific overtone en-
ergy distribution. To create acoustically appealing separation results, one has to consider
the complex physical properties of the sources, their delicate interaction in polyphonic
mixtures, as well as acoustic properties of the recording environment. To facilitate this
difficult task one can employ additional note information provided by a musical score or a
MIDI file to guide the separation process. Based on this concept, this thesis introduces two
novel, conceptually different approaches for separating arbitrary note groups from poly-
phonic audio recordings. While both approaches leverage the synchronization techniques
developed in this thesis to robustly align given score and audio representations, they build
on fundamentally different signal models. More precisely, given a MIDI file (representing
the score) and an audio recording (representing an interpretation) of a piece of music, the
idea of the first approach is to parameterize the spectrogram of the audio recording by ex-
ploiting the MIDI information. Closely following [41,42], the underlying model is based on
the concept of note-wise spectrograms each describing the part of a spectrogram that can
be attributed to a given note event. After initializing the model with note events provided
by the MIDI file, all model parameters are adapted using efficient numerical optimization
techniques such that the model spectrogram approximates the audio spectrogram as accu-
rately as possible. The resulting parameterization then allows for constructing an audio
recording considering only the notes of the target source. The second approach is based on
the non-negative matrix factorization (NMF) framework, which can be used to decompose
a magnitude spectrogram into a set of template (column) vectors and activation (row)
vectors in an unsupervised manner. To better control this decomposition, NMF has pre-
viously been extended using prior knowledge and parametric models. Following [44], this
thesis presents such an extension that employs the available score information to guide the
NMF learning and decomposition process. Opposed to previous methods, the main idea is
to impose constraints on both the template as well as the activation side. As experiments
show, using such double constraints results in musically meaningful decompositions similar
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to some parametric approaches, while being computationally less demanding and easier
to implement. Furthermore, as this thesis will show, additional onset constraints can be
incorporated in a straightforward manner without sacrificing robustness.

Besides the introduction of new computational approaches to score-informed source sep-
aration, one further goal of this thesis is to explore novel application scenarios based on
these techniques. So far, most methods have been developed for the purpose of extracting
individual instrument tracks from audio recordings. To further illustrate the potential of
score-informed source separation techniques, this thesis investigates two novel use cases.
As a first application, a novel voice or note equalizer is presented, which allows a user
not only to emphasize or attenuate whole instrument tracks but also specific note groups
played by different or the same instrument. Here, a group of notes might correspond, for
example, to a motif, a voice, or a melody. Moreover, by incorporating these concepts into
a previously proposed multimodal music player it is demonstrated how a user-friendly
interface might be devised. Given an audio recording and a scanned score image for a
piece of music, the interface allows a user to select a staff in the score in an intuitive
way. The corresponding group of notes is then separated or enhanced in the audio record-
ing in real-time. The goal is to enrich the overall listening experience, in particular for
classical music where every musician interprets a piece differently. Here, highlighting cen-
tral musical elements allows for perceiving these differences much more intensely. In a
second use case, instead of aiming at producing acoustically appealing separation results,
score-informed source separation techniques are employed for analysis purposes. Given a
MIDI file and an audio recording for a piece of music, the task consists of estimating an
intensity for each MIDI note event as occurring in the recording. On the one hand, this
enables a user to visually analyze and compare different interpretations of a piece in terms
of dynamics on a note-level. On the other hand, it allows for enriching a given score-like
MIDI representation with performance-specific subtleties.

1.1 Contributions of This Thesis

Overall, the main contributions of this thesis can be summarized as follows:

• A novel partial music synchronization method based on late-fusion principles allow-
ing for a reliable partial synchronization of music data across different versions and
domains. Here, the main idea is to look for consistencies and inconsistencies across
various alignments obtained from conceptually different synchronization strategies.

• A novel partial music synchronization method based on a strategy of performing a
joint structural analysis to detect the repetitive structure within and across different
versions of the same musical work. Here, a core component is a structure analysis
procedure that can cope with relative tempo differences between repeating segments.

• Various refinement strategies for global music synchronization including a new pro-
cedure based on a novel class of onset-based audio features in combination with
standard chroma features. The resulting approach significantly improves the syn-
chronization accuracy while preserving the robustness and efficiency of previously
described procedures.
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• A new type of chroma feature, which shows a higher degree of robustness to changes
in timbre than conventional chroma features. These novel CRP features significantly
improve the performance in matching and classification applications, where invari-
ance to instrumentation and tone color is required.

• A score-informed source separation approach employing a parametric model that
describes the spectrogram of a given recorded performance as a sum of note-event
spectrograms. Efficient numerical optimization techniques are used to adapt the
model parameters for a given audio recording.

• An extended NMF variant that exploits available score information to guide the
source separation process. Based on the idea of simultaneously constraining both the
template vectors as well as the activations, the method yields results similar to some
state-of-the-art parametric approaches while being computationally less demanding
and easier to implement.

• Novel application scenarios demonstrating the applicability and potential of score-
informed source separation techniques. Here, the thesis considers a novel voice equal-
izer as well as a note intensity analysis task in the context of performance analysis.

1.2 Structure of This Thesis

Overall, the thesis is subdivided into three parts corresponding to the three general MIR
tasks outlined in the introduction. These parts are organized in such a way that concepts,
methods and strategies developed in one part also lay important foundations for the sub-
sequent ones. The first part relates to the audio matching and retrieval task. Here, we
first describe chroma features in Chapter 2, which will be important throughout the entire
thesis. Then, in Chapter 3, we introduce the novel procedure which allows for significantly
boosting the timbre invariance of chroma features. In the second part of the thesis, we
focus on music synchronization techniques. We start in Chapter 4 with an overview of
standard alignment techniques, which underlie most previous synchronization approaches.
After that, we describe in Chapter 5 the novel late-fusion based music synchronization
approach and in Chapter 6 the new synchronization method based on music structure
analysis. Then, in Chapter 7, we introduce various new strategies for enhancing the ac-
curacy of methods for global music synchronization. In the third part of the thesis, we
then turn to score-informed audio processing methods. We begin in Chapter 8 with a
comprehensive overview of previously proposed methods. Then, in Chapter 9, we describe
the score-informed source separation approach based on a parametric model. The syn-
chronization techniques developed in the second part are of particular importance in this
context. We demonstrate the potential of the parametric model discussing two applica-
tion scenarios: voice equalization and note intensity estimation. Finally, we introduce in
Chapter 10 the novel score-informed NMF variant and conclude the thesis in Chapter 11
giving an outlook on future challenges.
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Chapter 2

Chroma Features

It is a well-known phenomenon that human perception of pitch is periodic in the sense that
two pitches are perceived as similar in “color” if they differ by an octave. Based on this
observation, a pitch can be separated into two components, which are referred to as tone
height and chroma, see [169]. Assuming the equal-tempered scale, the chromas correspond
to the set {C,C♯,D, . . . ,B} that consists of the twelve pitch spelling attributes1 as used in
Western music notation. Thus, a chroma feature is represented by a 12-dimensional vector
x = (x(1), x(2), . . . , x(12))⊤, where x(1) corresponds to chroma C, x(2) to chroma C♯, and
so on. In the feature extraction step, a given audio signal is converted into a sequence of
chroma features each expressing how the short-time energy of the signal is spread over the
twelve chroma bands. Identifying pitches that differ by an octave, chroma features show
a high degree of robustness to variations in timbre and closely correlate to the musical
aspect of harmony. This is the reason why chroma-based audio features, sometimes also
referred to as pitch class profiles, are a well-established tool for processing and analyzing
music data [5, 60, 116]. For example, basically every chord recognition procedure relies
on some kind of chroma representation [7, 16, 57, 70, 110, 139, 140, 168, 183]. Also, chroma
features have become the de facto standard for tasks such as audio structure analysis [13,
14,26,136,144,145] as well as music synchronization and alignment [75,82,116,131], which
will be covered in more detail in Part II of this thesis. Furthermore, chroma features
have turned out to be a powerful mid-level feature representation in content-based audio
retrieval tasks such as cover song identification [38, 164] or audio matching [95, 128].

There exist many approaches for the computation of chroma-based audio features. For
example, the conversion of an audio recording into a chroma representation (or chroma-
gram) may be performed by using a short-time Fourier transform in combination with
binning strategies [5], by using a constant-Q transform [10], or by employing a suitable
multirate filter bank [116]. Furthermore, the properties of chroma features can be signifi-
cantly changed by introducing suitable pre- and post-processing steps modifying spectral,
temporal, and dynamical aspects. This chapter gives an overview of several commonly
used chroma variants while discussing the role of the most important parameters that can
be used to modify the features’ characteristics. On overview of the entire feature process-

1Note that in the equal-tempered scale different pitch spellings such as C♯ and D♭ refer to the same
chroma.

11
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Figure 2.1. Overview of the feature extraction pipeline.

ing pipeline is given in Figure 2.1. The individual feature representations are illustrated in
Figure 2.3 using an audio recording of the first six measures of Op. 100, No. 2 by Friedrich
Burgmüller. MATLAB implementations of the chroma features discussed in this chapter
as well as of several other chroma variants have been made available to the public in form
of a chroma toolbox, which has recently been released under a GNU-GPL license, see also
Appendix A.

2.1 Pitch Representation

As basis for the chroma feature extraction, one first decomposes a given audio signal into
88 frequency bands with center frequencies corresponding to the pitches A0 to C8 (MIDI
pitches p = 21 to p = 108). As mentioned above, this decomposition can be derived in
different ways, for example, by suitably pooling Fourier coefficients obtained from one or
several spectrograms [5,38,60], by using a constant-Q transform [10] or multirate filter bank
techniques [116, 128]. To obtain a sufficient spectral resolution for the lower frequencies,
one either needs a low sampling rate or a large temporal window. In this thesis, a constant
Q multirate filter bank is employed using a sampling rate of 22050 Hz for high pitches,
4410 Hz for medium pitches, and 882 Hz for low pitches, see [116] for details. Each filter
is implemented using an eighth-order elliptic filter with 1 dB passband ripple and 50 dB
rejection in the stopband. To separate the adjacent notes, a Q factor of Q = 25 is used
and a transition band that has half the width of the passband. The employed pitch filters
possess a relatively wide passband, while still properly separating adjacent notes thanks to
sharp cutoffs in the transition bands, see Figure 2.2a. Actually, the pitch filters are robust
to deviations of up to ±25 cents2 from the respective note’s center frequency. However,
these properties are at the expense of large phase distortions and group delays. Since
this thesis considers only audio signals that are entirely known prior to computations, one

2The cent is a logarithmic unit to measure musical intervals. The semitone interval of the equally-
tempered scale equals 100 cents.
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Figure 2.2. Magnitude responses in dB for some of the pitch filters of the multirate pitch filter
bank used for the chroma computation. (a) Filters corresponding to MIDI pitches p ∈ [69 : 93]
(with respect to the sampling rate 4410 Hz). (b) Filters after applying a shift of half a semitone
(σ = 1

2
).

can apply the following trick: After filtering in the forward direction, the filtered signal
is reversed and run back through the filter. The resulting output signal has precisely
zero phase distortion and a magnitude modified by the square of the filter’s magnitude
response. Further details may be found in standard text books on digital signal processing
such as [149]. In the next step, for each of the 88 pitch subbands, the short-time mean-
square power (i. e., the samples of each subband output are squared) is computed using a
rectangular window of a fixed length and an overlap of 50 %. For example, using a window
length of 200 milliseconds leads to a feature rate of 10 Hz (10 features per second). The
resulting Pitch features measure the short-time energy content of the audio signal within
each pitch subband, see Figure 2.3c for an illustration and [116] for further details.

2.2 Tuning

To account for the global tuning of a recording, one needs to suitably shift the center
frequencies of the subband-filters of the multirate filter bank. To this end, one can com-
pute an average spectrogram vector and derive an estimate for the tuning deviation by
simulating the filterbank shifts using weighted binning techniques similar to [60]. The
methods in this thesis employ six different multirate filter banks corresponding to a shift
of σ ∈

{
0, 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4

}
semitones, respectively, see Figure 2.2 for an illustration. From

these filter banks, the most suitable one is chosen according to the estimated tuning devi-
ation.

2.3 CP Feature

From the pitch representation, one obtains a chroma representation simply by adding
up the corresponding values that belong to the same chroma. For example, to compute
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Figure 2.3. Score and various feature representations for an audio recording of the first four
measures of Op. 100, No. 2 by Friedrich Burgmüller.
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the entry corresponding to chroma C, one adds up values corresponding to the musical
pitches C1, C2, . . ., C8 (MIDI pitches p = 24, 36, . . . , 108). For each window, this yields a
12-dimensional vector x = (x(1), x(2), . . . , x(12))⊤, where x(1) corresponds to chroma C,
x(2) to chroma C♯, and so on. The resulting features are referred to as Chroma-Pitch and
are denoted by CP in the following, see Figure 2.3d for our Burgmüller example. Recall
that the timbre of a sound strongly relates to the energy distribution in the harmonics.
Therefore, due to the octave equivalence, chroma features show a high degree of robust-
ness to variations in timbre. Furthermore, chroma features account for the close octave
relationship in both melody and harmony as prominent in Western music and are ideal for
the analysis of music that is characterized by a prominent harmonic progression, see [5].

2.4 Normalization

To achieve invariance in dynamics, one can normalize the features with respect to some
suitable norm. While there are various norms to choose from, this thesis only consid-

ers the ℓp-norm defined by ‖x‖p :=
(∑12

i=1 |x(i)|
p
)1/p

for a given chroma vector x =
(x(1), x(2), . . . , x(12))⊤ and a natural number p ∈ N. To avoid random energy distribu-
tions occurring during passages of very low energy (e. g., passages of silence before the
actual start of the recording or during long pauses), a chroma vector x is replaced by the
uniform vector of norm one in case ‖x‖p falls below a certain threshold. Note that the
case p = 2 yields the Euclidean norm and the case p = 1 the Manhattan norm. If not
specified otherwise, all chroma vectors in this thesis are normalized with respect to the
Euclidean norm, see also Figure 2.3e.

2.5 CLP Features

To account for the logarithmic sensation of sound intensity [199], one often applies a
logarithmic amplitude compression when computing audio features [143]. For example,
similar to µ-law compression [79], each energy values e of the pitch representation is
replaced by the value log(η · e + 1), where η is a suitable positive constant. Then, the
chroma values are computed as explained in Section 2.3. The resulting features, which
depend on the compression parameter η, are referred to as Chroma-Log-Pitch and are
denoted by CLP[η] in the following, see Figure 2.3f. Note that a similar flattening
effect can be achieved by spectral whitening techniques, where the pitch subbands are
normalized according to short-time variances in the subbands [60, 90].

2.6 CENS Features

Adding a further degree of abstraction by considering short-time statistics over energy
distributions within the chroma bands, one obtains CENS (Chroma Energy Normalized
Statistics) features, which constitute a family of scalable and robust audio features. These
features have turned out to be very useful in audio matching and retrieval applications [95,
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128]. In computing CENS features, each chroma vector is first normalized with respect to
the ℓ1-norm thus expressing relative energy distribution. Then, a quantization is applied
based on suitably chosen thresholds. Here, choosing thresholds in a logarithmic fashion
introduces some kind of logarithmic compression as above, see [128] for details. In a
subsequent step, the features are further smoothed over a window of length w ∈ N and
downsampled by a factor of d, see Section 2.7. The resulting features are normalized with
respect to the ℓ2-norm and denoted by CENSwd , see also Figure 2.3g and Figure 2.3h for
illustrations.

2.7 Smoothing

As already mentioned in Section 2.6, one can further process the various chroma variants
by applying smoothing and downsampling operations. For example, subsequent vectors
of a feature sequences can be averaged using a sliding window of size w (given in frames)
and then downsampled by a factor d. Starting with CP, CLP[η], and CENS, the resulting
features are denoted by CPw

d , CLP[η]
w
d , and CENSwd , respectively. Even though being a

simple strategy, smoothing can have a significant impact on the features’ behavior within
a music analysis tasks. For example, as reported in [128], the temporal blurring of CENS
features makes audio matching more robust to local tempo variations. Furthermore, using
the parameters w and d, one obtains a computationally inexpensive procedure to simulate
tempo changes on the feature level. To illustrate this, consider the following example.
Suppose, we start with a chroma representation having a feature rate of 10 Hz. Then
using w = 41 and d = 10, one obtains one chroma vector per second, each covering
roughly 4100 ms of the original audio signal. Now, using w = 53 (instead of w = 41) and
d = 13 (instead of d = 10) results in a temporally scaled version of the features sequence
simulating a tempo change of 10/13 ≈ 0.77. Such tempo change strategies have been
applied successfully in the context of audio indexing [95].

2.8 Chroma Toolbox

The feature extraction components described in Sections 2.1-2.7 as well as several exten-
sions have been implemented as part of a MATLAB chroma toolbox, which can be freely
obtained from the website [17] under a GNU-GPL license. Appendix A gives an overview
of the main functions along with the most important parameters.



Chapter 3

Timbre-Invariant Audio Features

One main goal of content-based music analysis and retrieval is to reveal semantically mean-
ingful relationships between different music excerpts contained in a given data collection.
Here, the notion of similarity used to compare different music excerpts is a delicate issue
and largely depends on the respective application. In particular, for detecting harmony-
based relations, chroma features as described in Chapter 2 have turned out to be a powerful
mid-level representation for comparing and relating music data in various realizations and
formats [5, 60, 116]. Fusing pitches that differ by an octave, chroma features show a high
degree of robustness to variations in timbre and are well-suited for the analysis of West-
ern music which is characterized by a prominent harmonic progression [5]. This chapter
presents a novel method for making chroma features even more robust to changes in tim-
bre. At the same time, their discriminative power – as needed in matching applications
– is preserved. Here, the general idea is to discard timbre-related information similar to
that expressed by certain mel-frequency cepstral coefficients (MFCCs). More precisely,
recall that the mel-frequency cepstrum is obtained by taking a discrete cosine transform
(DCT) of a log power spectrum on the logarithmic mel scale [30]. A generally accepted
observation is that the lower MFCCs are closely related to the aspect of timbre [3, 178].
Therefore, intuitively spoken, one should achieve some degree of timbre-invariance when
discarding exactly this information. As one main contribution, this chapter shows how this
idea can be combined with the concept of chroma features by first replacing the nonlinear
mel scale with a nonlinear pitch scale. Then, a DCT is applied to the logarithmized pitch
representation to obtain pitch-frequency cepstral coefficients (PFCCs). After keeping
only the upper coefficients and applying an inverse DCT, the resulting pitch vectors are
finally projected onto twelve-dimensional chroma vectors. These vectors are referred to as
CRP (chroma DCT-reduced log pitch) features. The technical details of this procedure are
described in Section 3.1. The gist of these novel features is illustrated by Figure 3.3, which
shows two different types of chromagrams for two musically related audio excerpts that
differ significantly in instrumentation. Note that the two chromagrams based on conven-
tional chroma features (Figure 3.3a and b) look rather different, whereas the chromagrams
based on the novel CRP features (Figure 3.3c and d) are quite similar thus indicating the
boost towards timbre invariance.

17
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CRP audio features constitute a valuable tool in all retrieval, matching, and classification
applications where one is interested in blending out musical details related to timbre and
instrumentation. In particular, this chapter demonstrates the potential of this concept by
means of the audio matching scenario based on the query-by-example paradigm as intro-
duced in [128]. Given a short query audio clip, the goal is to automatically retrieve all
excerpts from all recordings within a given audio collection that musically correspond to
the query. Here, one typically has to cope with variations in timbre and instrumentation as
they appear in different interpretations, cover songs, and arrangements of a piece of music.
As another contribution, the audio matching procedure is used to systematically evaluate
the matching and separation capabilities of different types of audio features. Among oth-
ers, various quality measures are introduced that indicate how well semantically correct
matches are separated from spurious matches. As it turns out, these quality measures are
also good indicators for the degree of timbre invariance exhibited by the respective fea-
ture type. In a series of experiments the novel CRP features are systematically compared
with previously suggested chroma features, which also reveals the role of the various pa-
rameters and measures involved in the feature computation. Among others, this chapter
investigates the role of the feature rate and the number of coefficients to be pruned as
well as the influence of amplitude compression and spectral whitening. Furthermore, we
discuss two different cost measures used to compare the resulting features including the
binary shift measure introduced in [164]. As one main result, it is shown that the proposed
procedure is conceptually different to previous feature enhancement strategies in the sense
that it yields a significant boost towards timbre invariance independent of a particular
choice of parameters and measures. To allow for a straightforward reproduction of these
experiments, a reference implementation of CRP features has been made available in a
MATLAB toolbox, see also Appendix A.

As a final contribution, the DCT-based reduction step in the proposed procedure is an-
alyzed in detail. As it turns out, the most dominant of the upper PFCCs capture inter-
pretable pitch periodicities, whereas PFCCs surrounding the dominant ones account for
different phases. We show that a reduction based on only a few relevant DCT basis vec-
tors along with suitable phase-shifted duplicates results in a similar feature enhancement
as using the entire range of upper DCT basis vectors, see Section 3.4. This observation
reveals the musical meaning of certain pitch-frequency cepstral coefficients.

Section 3.1 starts with the main contribution by introducing the novel CRP features and
by describing in detail the involved signal processing steps. Then, Section 3.2 gives a
short description of the audio matching application, which also lays the foundation for
various quality measures used to compare and evaluate the different feature types. Next,
in Section 3.3, a series of experiments is presented discussing the influence of various
parameters on the quality of the resulting CRP features. Finally, in Section 3.4, the
principles are investigated that underlie the boost towards timbre invariance for harmony-
based Western classical music. Conclusions and prospects on future work are given in
Section 3.5. A discussion of related work and further references are given in the respective
sections.
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Figure 3.1. Overview of the steps in the computation of the CRP (chroma DCT-reduced log
pitch) features.

3.1 Feature Design

This section describes the proposed enhancement procedure that allows for increasing the
robustness of chroma features to changes in timbre and instrumentation while keeping
their discriminative power. To this end, we combine and modify various techniques known
from the design of chroma features and mel-frequency cepstral coefficients (MFCCs) in
a novel way. In Section 3.1.1, we review MFCCs and then, in Section 3.1.2, go into the
technical details of the proposed procedure. Finally, Section 3.1.3 reports on a first baseline
experiment conducted on systematically generated audio material.

3.1.1 MFCC features

In some sense, MFCC features, which are closely related to the aspect of timbre, can be con-
sidered as kind of complementary to chroma features. Originally, MFCCs were developed
for speech processing applications [30, 150] and have then found their way into the music
domain [103], where they have been used for various music analysis tasks including genre
classification [182] and musical instrument recognition [39]. In most implementations, the
mel-frequency cepstrum is obtained in the following way. First, the power spectrum of the
signal is computed using a short-time Fourier transform. Then, to account for properties
of the human auditory system, the resulting coefficients are pooled into 20 to 40 nonlin-
early spaced frequency bins along the perceptually motivated mel frequency scale [150].
Similarly, a musically motivated frequency scale is used in [108]. Finally, after taking the
logarithm on the bin values, a discrete cosine transform (DCT) is applied to yield the
MFCCs. A generally accepted observation is that the lower MFCCs are closely related
to the aspect of timbre [3, 178]. Therefore, intuitively spoken, one should achieve some
degree of timbre-invariance when discarding exactly this information. This is the basic
idea of the enhancement procedure to be described next.

3.1.2 CRP Feature Computation

We now describe in detail all steps needed to compute the novel CRP audio features. For
an overview of these steps, see Figure 3.1. Instead of using a mel-frequency scale, CRP
features are based on a pitch-frequency scale. To this end, we use the filter bank approach
described in Section 2.1 to compute a pitch representation of the audio signal, which can be
summarized as follows. First, we decompose the audio signal into 88 frequency bands with
center frequencies corresponding to the MIDI pitches p = 21 to p = 108. Next, we compute
the short-time mean-square power (local energy) for each of the 88 squared subbands using
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Figure 3.2. Various feature representations of the passage E3 (trombone part in the Yablon-
sky recording of the Shostakovich Waltz) illustrating the steps in the CRP feature computation.
(a) Pitch representation. (b) Pitch representation after the logarithmic compression. (c) Pitch
representation after the DCT reduction step keeping coefficients [55 : 120]. (d) CRP(55) features.

a rectangular window of a fixed length and an overlap of 50%. For example, a window
length corresponding to 1 second leads to a feature rate of 2 Hz (2 features per second).
In Section 3.3.5, we discuss the role of the feature rate in more detail. As a result, we
obtain a sequence of 88 dimensional feature vectors where the entries correspond to MIDI
pitches p = 21 to p = 108. For later usage, we extend each such vector by suitably adding
zeros (20 at the beginning and 12 at the end) to obtain a 120 dimensional feature vector
where the entries now correspond to MIDI pitches p = 1 to p = 120. For an illustration,
see Figure 3.2a.

To obtain a conventional chroma representation or chromagram (Chroma-Pitch), one adds
up the corresponding values of the pitch representation that belong to the same chroma
yielding a 12-dimensional vector for each analysis window, see Figure 3.3 for an illustration.
For the proposed audio features, we further process the pitch representation before doing
the chroma binning. The steps are similar to the ones in the computation of MFCCs. First,
the pitch representation is logarithmized, see Figure 3.2(b). Here, we replace each entry e
by the value log(η·e+1), where η is a suitable positive constant. Similar to CLP[η] features,
such a logarithmic compression is conducted to account for the logarithmic sensation of
sound intensity [103, 199] and was also used in a similar way in [91]. The role of the
parameter η, which is set to η = 100 in most of the following experiments, is discussed in
Section 3.3.4.

Next, we apply a discrete cosine transform (DCT) to each of the 120-dimensional logarith-
mized pitch vectors resulting in 120 coefficients, which are referred to as pitch-frequency
cepstral coefficients (PFCCs). The PFCCs have a similar interpretation as the MFCCs. In
particular, the lower coefficients are related to timbre as observed by various researchers,
see, e. g., [3, 178]. Now, our goal of achieving timbre-invariance is the exact opposite of
the goal of capturing timbre. Therefore, we discard the information given by the lower
n− 1 PFCCs for a parameter n ∈ [1 : 120] by setting them to zero while leaving the upper
PFCCs unchanged. Each resulting 120-dimensional vector is then transformed by the in-
verse DCT to yield an enhanced 120-dimensional pitch vector, see Figure 3.2(c). The role
of the parameter n is discussed in Section 3.3.3. Furthermore, in Section 3.4, we analyze
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Figure 3.3. Various chromagrams of the passages E1 (clarinet) and E3 (trombone) in the Yablon-
sky recording of the Shostakovich Waltz. (a)/(b): Conventional chromagram of E1/E3. (c)/(d):
CRP(55) chromagram of E1/E3. All chroma vectors are normalized w.r.t. the Euclidean norm.

the reduction step in detail and derive a musically meaningful explanation responsible for
the final enhancement.

In the last stage, the entries of each enhanced pitch vector are projected onto the twelve
chroma bins to yield a 12-dimensional chroma vector. Finally, the chroma vectors are
normalized with respect to the Euclidean norm to have unit length. The resulting audio
features are referred to as CRP(n) (chroma DCT-reduced log pitch) features, see Fig-
ure 3.2(d). A reference MATLAB implementation of CRP features is available as part
of the chroma toolbox, which has been made freely available on a website1, see also Ap-
pendix A.

In the experiments to be described, it is shown that the resulting CRP features have indeed
gained a significant amount of robustness to changes in timbre and instrumentation. As
a first illustrative example, we consider the second Waltz of the Jazz Suite No. 2 by Shos-
takovich, which also serves as running example in the subsequent sections. The theme
of this piece occurs four times played in four different instrumentations (clarinet, strings,
trombone, tutti). Furthermore, there are also significant differences between the four
themes with respect to secondary voices. In the considered recording of this piece by
Yablonsky, the four occurrences of the theme are referred to as E1 (5-26), E2 (39-59), E3

(129-149), and E4 (160-180), where the brackets indicate the start and end times in seconds
of the respective passage. Figure 3.3(a) and (b) show conventional chromagrams of the
passages E1 (theme played by clarinet) and E3 (theme played by trombone), respectively.
Note that the two chromagrams strongly deviate from each other due to large differences
in instrumentation and voicing. Contrary, the corresponding two CRP(55) chromagrams
as shown in (c) and (d) of Figure 3.3 coincide to a much larger degree.

1www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/

www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
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3.1.3 Baseline Experiments on Chord Chroma Classes

To illustrate the boost of robustness achieved by the CRP features, we next discuss a base-
line experiment conducted on systematically generated audio material. For the moment,
we fix certain parameters using a feature rate of 2 Hz, setting η = 100 in the logarithmic
compression, and considering only the case n = 55 in CRP(n). Section 3.3 gives a de-
tailed analysis of these parameters reporting on extensive experiments based on real audio
material.

We compare the resulting CRP(55) features with various publicly available implementa-
tions of state-of-the-art chroma feature types including three implementations (Chroma-IF,
Chroma-P, Chroma-E) by Ellis2, one implementation (Chroma-QM) developed at the Cen-
tre for Digital Music, Queen Mary, University of London3, as well as one implementation
(Chroma-MIR) contained in the MIR toolbox4. These chroma variants are based on simi-
lar concepts as the ones described in Chapter 2 but differ in some details. The Chroma-E
implementation is based on a Gaussian weighted pooling of magnitude spectrum coeffi-
cients. Its extension, Chroma-P, additionally implements a simple spectral peak picking
to reduce spectral noise. In the more complex Chroma-IF variant, spectral regions of
uniform instantaneous frequency are estimated to separate tonal components from noise.
The instantaneous frequency information is also used to account for tuning differences.
The fourth implementation, Chroma-MIR, is derived from the magnitude spectrum using
a decibel scale. The Chroma-QM implementation uses the magnitude of the constant-Q
transform as described in [10]. For further details and applications of the various chroma
variants, see [10, 12, 38, 60, 97]. Furthermore, we use the conventional chroma features
(Chroma-Pitch) obtained from the pitch representation as described in Section 2.3. For all
chroma implementations, similar parameters settings and rates were used, see Appendix B.
Furthermore, all chroma features were normalized with respect to the Euclidean norm.

To indicate the degree of timbre-invariance of the various chroma implementations, the
following baseline experiment was conducted. First, a MIDI file was created containing
all possible single pitches (1-chords), duads (2-chords) and triads (3-chords) within a fixed
octave. This resulted in 12+

(
12
2

)
+
(
12
3

)
= 220 chords. The MIDI file was then synthesized

in 24 different ways using eight different instruments each playing the file in three different
octaves. Here, the software Cubase was used in combination with a high quality sample
library with a size of more than 50GB. Fixing a specific feature type, each of the resulting
24 audio files was converted into a chromagram. Next, for each of the 220 chords a class
was formed consisting of 24 chroma vectors—one representative chroma vector from each
of the 24 realizations of the respective chord. The classes are referred to as chord chroma
classes. The distance between two normalized chroma vectors was computed using 1−〈·, ·〉
(also referred to as cosine distance). Note that the entries of CRP features may be negative,
so that the distance between two normalized CRP vectors lies in the range [0, 2].

Now, disregarding timbre and dynamics, any two chroma vectors within a chord chroma
class are considered as similar, whereas two chroma vectors from different classes are
considered as dissimilar. To measure the degree of timbre invariance of a given feature

2http://www.ee.columbia.edu/~dpwe/resources/matlab/chroma-ansyn/
3http://www.vamp-plugins.org
4http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/

http://www.ee.columbia.edu/~dpwe/resources/matlab/chroma-ansyn/
http://www.vamp-plugins.org
http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
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Feature type µI σI µO σO δ
Chroma-IF 0.299 0.193 0.654 0.188 0.457
Chroma-P 0.174 0.133 0.464 0.160 0.374
Chroma-E 0.168 0.129 0.452 0.159 0.373
Chroma-MIR 0.107 0.078 0.268 0.137 0.398
Chroma-QM 0.124 0.098 0.396 0.146 0.313
Chroma-Pitch 0.232 0.194 0.749 0.161 0.309
CRP(55) 0.078 0.069 1.002 0.131 0.077

Table 3.1. Quality of several feature types in the experiments on chord chroma classes.

type, we compute the distances between any two chroma vectors that belong to the same
chord chroma class. Let µI be the mean and σI the standard deviation over the resulting
220 ·

(
24
2

)
distances. Note that µI should be small in the case that the feature type has

a high degree of timbre invariance. Similarly, let µO be the mean and σO the standard
deviation over the distances of any two chroma vectors from different chord chroma classes.
Note that µO should be large to indicate a high discriminative power of a feature type.
Finally, the quotient δ := µI/µO can be formed which expresses the within-class distance
µI relative to the across-class distance µO. Note that a small value of δ is desirable in view
of our evaluation.

Table 3.1 shows the values µI, µO, and δ for various feature types. Note that for CRP(55)
features the within-class distance (µI = 0.078) is much smaller while the across-class
distance (µO = 1.002) is much larger than for all other conventional chroma types. This
clearly demonstrates that CRP features differ fundamentally from previous chroma types.
As shown in Section 3.3, the boost of timbre invariance can also be observed when using
real audio material.

3.2 Application: Audio Matching

The identification and retrieval of semantically related music data is of major concern in
the field of music information retrieval. Loosely speaking, one can distinguish between
two different scenarios. In the global matching scenario one compares and relates entire
instances (on the document level) of a piece of music such as entire audio recordings or
MIDI files. For example, in cover song identification the goal is to identify all performances
of the same piece by different artists with varying interpretations, styles, instrumentation,
and tempos [38, 164]. In the local matching scenario one compares and relates different
subsegments contained in the same or in different instances of a piece. For example, in
audio matching the goal is to automatically retrieve all passages (subsegments) from all
audio documents that musically correspond to a given query excerpt [128]. Of course, the
two scenarios seamlessly merge into each other. For example, Serrà et al. [164] use a local
matching strategy for global document retrieval. The quality of the respective matching
procedure depends on various factors including the underlying feature representation, the
cost measure used to compare two feature vectors, as well as the distance function used
to relate the various feature sequences.
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In this chapter, we study the behavior of the proposed feature enhancement strategy
within the audio matching scenario. In Section 3.2.1, we define the distance function that
underlies the matching procedure and provides a powerful tool for compactly assessing the
matching capability of the used feature type. Then, in Section 3.2.2, we derive various
quality measures from the distance function, which turn out to be good indicators for the
degree of timbre invariance exhibited by the respective feature type.

3.2.1 Distance Function

Let Q be a query a clip (typically a short audio excerpt) and let (D1, D2, . . . , DN ) be
a collection of database documents (typically a large number of audio recordings). To
simplify things, we assume that we have only one large database document D by concate-
nating D1, . . . , DN , where we keep track of document boundaries in a supplemental data
structure. The goal of audio matching is to find all subsegments or passages within D
that are similar to Q.

The first step of the audio matching procedure is to transform the query and the database
document into suitable feature sequences X = (X(1), X(2), . . . , X(K)) with X(k) ∈ F for
k ∈ [1 : K] := {1, 2, . . . ,K} and Y = (Y (1), Y (2), . . . , Y (L)) with Y (ℓ) ∈ F for ℓ ∈ [1 : L],
respectively. Here, F denotes the underlying feature space. For example, in the case of
normalized chroma features one has F = [0, 1]12. Furthermore, let c : F × F → R denote
a cost measure on F . If not stated otherwise, we revert to the cost measure 1 − 〈·, ·〉
(which is the cosine measure for normalized vectors). In Section 3.3, we also consider a
binary shift measure similar to the one as introduced in [164]. As basis for the matching
procedure, we use a distance function that locally compares the query sequence X with
subsequences of the database sequence Y . More precisely, we define a distance function
∆ : [1 : L]→ R ∪ {∞} between X and Y using dynamic time warping (DTW):

∆(ℓ) :=
1

K
min
a∈[1:ℓ]

(
DTW

(
X , Y (a : ℓ)

))
, (3.1)

where Y (a : ℓ) denotes the subsequence of Y starting at index a and ending at index
ℓ ∈ [1 : L]. Furthermore, DTW(X,Y (a : ℓ)) denotes the DTW distance between X and
Y (a : ℓ) with respect to the cost measure c, which will be explained in more detail in
Part II. To avoid degenerations in the DTW alignment, we use the modified step size
condition with step sizes (2, 1), (1, 2), and (1, 1) (instead of the classical step sizes (1, 0),
(0, 1), and (1, 1)). Note that the distance function ∆ can be computed efficiently using
dynamic programming.

The interpretation of ∆ is as follows: a small value ∆(ℓ) for some ℓ ∈ [1 : L] indicates that
the subsequence of Y starting at frame aℓ (with aℓ ∈ [1 : ℓ] denoting the minimizing index
in (3.1)) and ending at frame ℓ is similar to X. To determine the best match between
Q and D, one simply has to look for the index ℓ0 ∈ [1 : L] minimizing ∆. Then the
best match is the audio clip corresponding to the feature subsequence (Y (aℓ0), . . . , Y (ℓ0)).
The value ∆(ℓ0) is also referred to as the cost of the match. To look for the second best
match, we exclude a neighborhood around the index ℓ0 from further consideration to avoid
large overlaps with the best match. For the subsequent experiments, we exclude half the
query length to the left and right by setting the corresponding ∆-values to ∞. To find
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Figure 3.4. Distance function with respect to the query E3 for a database sequence corresponding
to audio recordings of three different pieces (Bach Toccata played by Cabrera, Shostakovich Waltz
conducted by Yablonsky, Yesterday by the Beatles). Indices corresponding to the four true matches
are indicated by the four vertical red lines. The false alarm region consists of all indices outside the
neighborhoods that are indicated by light red. The various quality measures are indicated by the
horizontal lines. The green dot and the blue circle indicate the positions in the distance function
that correspond to max

X

T
and min

X

F
, respectively.

subsequent matches, the above procedure is repeated until a certain number of matches
is obtained or a specified distance threshold is exceeded. Note that the extracted matches
can be naturally ranked according to their cost.

We illustrate the definition of ∆ by means of our Shostakovich example introduced in Sec-
tion 3.1.2. We consider three different database documents that refer to audio recordings
of three different pieces (Bach Toccata played by Cabrera, Shostakovich Waltz conducted
by Yablonsky, Yesterday by the Beatles). First, we transform the three audio recordings
into suitable feature sequences, which are concatenated to form a single database feature
sequence Y . Furthermore, using the passage E3 (trombone) from the Yablonsky recording
as query, we derive a query feature sequence X for the query E3. Figure 3.4 shows the
resulting distance function ∆. Within the three documents, there are four semantically
correct matches, namely the passages E1, E2, E3, and E4 within the Waltz. Indeed, these
four passages are revealed by four local minima of ∆. However, note that due to the above
mentioned differences in timbre, some of these local minima are not well developed and
have relatively large ∆-values such as the one corresponding to E1. This is problematic
as will be detailed in the next section. For example, iteratively extracting matches as de-
scribed above, E3, E4, and E2 appear as the top three matches. However, the next match
is a false positive match (corresponding to the index 320 next to the right neighborhood
boundary of E3), before E1 is identified as the fifth match.

3.2.2 Quality Measures

In view of the audio matching application, the following two properties of ∆ are of crucial
importance. First, the semantically correct matches (in the following referred to as true
matches) should correspond to local minima of ∆ close to zero thus avoiding false negatives.
We capture this property by defining µX

T and maxXT to be the average and maximum of
∆, respectively, over all indices that correspond to the local minima of the true matches
for a given query X. Second, ∆ should be well above zero outside a neighborhood of the
desired local minima thus avoiding false positives. Recall from Section 3.2.1 that we use
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half the query length to the left and right to define such a neighborhood. The region
outside these neighborhoods is referred to as false alarm region. We then define µX

F and
minXF to be the average respective minimum of ∆ over all indices within the false alarm
region. For our Shostakovich example shown in Figure 3.4, these values are indicated by
suitable horizontal lines. In order to separate the true matches from spurious matches, it
is clear that µX

T and maxXT should be small whereas µX
F and minXF should be large. We

express these two properties within a single number, respectively, by defining the quotients
αX := µX

T /µX
F and γX := maxXT /minXF .

In view of a good separability, αX and γX should be close to zero. In the case γX < 1,
all true matches appear as the top most matches. Contrary, γX > 1 indicates that at
least one false positive match appears before all true matches are retrieved. Note that the
quality measure γX is rather strict in the sense that one single outlier (either a true match
of high cost or a spurious match of low cost in the false alarm region) may completely
corrupt the value of γX . Contrary, the quality measure αX is rather soft in the sense
that despite of having a low value αX one may obtain a large number of false positive
matches. As a trade-off between the two quality measures αX and γX , we introduce a
third quality measure βX . To this end, we sort the indices within the false alarm region by
increasing cost and define µp%,X

F to be the average ∆ only over the lower p% of the indices,

p ∈ [0, 100], see also Figure 3.4. Note that for p = 100, one simply obtains µp%,X
F = µX

F .

Finally, we define βX := µX
T /µp%,X

F . In the experiments, we used p = 1 considering only
1% of the indices within the false alarm region. Note that βX is a much better measure for
indicating possible false positive matches than αX while being more robust to outliers than
γX . In Section 3.3, we apply these quality measures on the basis of a carefully selected set
of queries and a manually annotated collection of audio recordings in order to determine
the degree of timbre invariance of various features types.

3.3 Experiments

Section 3.1.3 reported on a first baseline experiment using systematically generated audio
material. This section presents a series of experiments based on real audio recordings to
indicate how CRP features behave in comparison to previously introduced chroma features
as well as to explore the role of various parameters. First, in Section 3.3.2, it is shown that
CRP features outperform various publicly available state-of-the-art chroma features [12,38,
97] with regard to timbre invariance. Then, we discuss the dependency of the CRP features’
quality on the number of coefficients to be pruned in the reduction step (Section 3.3.3), on
the value of the constant used in the logarithmic compression (Section 3.3.4), and on the
feature rate (Section 3.3.5). Only recently, Serrà et al. [164] have introduced a novel binary
shift measure for comparing chroma features. In Section 3.3.6, we show that CRP features
also yield significant quality improvements in combination with this novel cost measure.
Finally, we investigate the effect of the CRP features on precision and recall values in the
context of the audio matching application (Section 3.3.7). Altogether, the experiments
show that the proposed enhancement strategy yields a significant boost towards timbre
invariance independent of a particular choice of parameters and measures.
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Figure 3.5. Several distance functions shown for two recordings (Yablonsky, Chailly) of the
Shostakovich example using the excerpt E3 as query. The following feature types were used:
Chroma-IF (thin green), Chroma-Pitch (blue) and CRP(55) (bold black). For the query, there are
8 annotated excerpts (true matches).

3.3.1 Experimental Setup

For evaluating and comparing various types of chroma features, we employ a collection of
audio recordings compiled by the author, which comprises harmony-based music of various
genres. Here, the objective was to include music material that, on the one hand, contains a
large number of harmonically related excerpts, which, on the other hand, reveal significant
differences in timbre and instrumentation. For one thing, the collection contains pieces
such as the Waltz by Shostakovich or the Bolero by Ravel, where a theme is repeated
in different instrumentations. For another thing, for each piece there are at least two
different versions such as different arrangements or cover songs. For example, on the
classical music side, the collection contains an orchestra version as well as a piano version
of the first movement of Beethoven’s Fifth Symphony, Brahms’ Hungarian dance No. 5, or
Wagner’s Prelude of the Meistersinger. On the popular music side, there are the original
version and at least one cover song of pieces by the Beatles, Queen, Genesis, Indigo Girls,
and Gloria Gaynor. Altogether, the collection consists of 32 recordings amounting to 166
minutes of music, see Appendix B.

A total of 101 audio excerpts with an average length of 30 seconds were carefully selected,
which are used as queries in the following matching experiments. The data collection was
then manually annotated by specifying all relevant matches (referred to as true matches,
see Section 3.2.1) for each of the queries. At this point, it should be emphasized that
the main object of these experiments is to assess the degree of timbre invariance and the
discriminative power of the various chroma features. In other words, we are interested in
evaluating the underlying features and use the matching procedure only for the purpose of
comparing features. Therefore, we employ a controlled and manageable database with a
clear notion of true matches, where the true matches represent various kinds of variations
with regard to timbre and instrumentation. For each query X, we compute the values
µX
T , µX

F , µ1%,X
F , minXF , and maxXT as well as the quality measures αX , βX , and γX using

the entire collection as the database documents, see Section 3.2.2. Averaging over all 101
queries, we obtain the corresponding numbers denoted by µT, µF, µ

1%
F , minF, and maxT,

as well as α, β, and γ. Note that α is not the quotient of µT and µF, but the average of
the αX . Analogously, this also holds for β and γ.
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Figure 3.6. Different distance functions using the excerpt F3 as query. Only the part of the
database is shown that consists of two versions (original by Indigo Girls, cover by Dave Cooley) of
the piece “Free in you”. Altogether, there are 6 true matches denoted by F1 to F6. The following
feature types were used: Chroma-IF (thin green), Chroma-Pitch (blue) and CRP(55) (bold black).

3.3.2 Comparison Between Feature Types

We compare the CRP(n) features for various parameters n ∈ [1 : 120] with various state-
of-the-art chroma types using the same parameter settings as described in Section 3.1.3
(feature rate of 2 Hz, η = 100, feature vectors of Euclidean norm 1). Before giving a
systematic evaluation, we illustrate the matching capability of different feature types by
means of our Shostakovich example, see Section 3.1.2. The database contains two different
recordings (Yablonsky, Chailly) of the Waltz with 8 annotated excerpts corresponding to
the theme, where E1 to E4 denote the corresponding excerpts in the Yablonsky and E5

to E8 in the Chailly recording. Now, using E3 (trombone) as query, one has eight true
matches. Using conventional chroma features such as Chroma-IF or Chroma-Pitch most of
the expected local minima are not significant or not even existing (e. g., E5), see Figure 3.5.
Now, using CRP(n) features, one obtains for all eight true matches (even for E5) much
more concise local minima, see the black curve of Figure 3.5. This demonstrates that the
particular choice of a feature type has a significant impact on the final matching quality.
A similar effect can be noticed in Figure 3.6, which shows the distance function for the
song “Free in you” by the Indigo Girls and a cover version of the same piece by Dave
Cooley. In the original version, the voice is accompanied by an acoustic guitar and some
moderate percussion, whereas in the cover song there are additional voices, percussion is
much more dominant, and the guitar is replaced by distorted electronic synthesizer effects.
Also for this popular music example, using conventional chroma features (Chroma-IF,
Chroma-Pitch) results in a distance function without well-defined local minima for the
true matches (especially for the cover version). On the contrary, using CRP(n) features
leads to local minima at the positions of the true matches that are clearly separated from
the false alarm region.

Table 3.2 shows different quality measures for six types of conventional chroma features
and for the novel CRP(n) features for selected parameters n ∈ [1 : 120]. For example,
using the conventional chroma features Chroma-P, the average cost of the true matches
is µT = 0.042, whereas the average distance in the false alarm region is µF = 0.132. The
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µT µF α µT µ1%
F β maxT minF γ

Chroma-IF 0.150 0.313 0.487 0.150 0.198 0.767 0.177 0.162 1.098
Chroma-P 0.042 0.132 0.320 0.042 0.072 0.610 0.055 0.060 0.954
Chroma-E 0.045 0.133 0.346 0.045 0.075 0.642 0.059 0.062 0.979
Chroma-MIR 0.032 0.078 0.415 0.032 0.042 0.834 0.040 0.035 1.234
Chroma-QM 0.065 0.147 0.457 0.065 0.090 0.750 0.080 0.075 1.087
Chroma-Pitch 0.120 0.433 0.282 0.120 0.219 0.568 0.164 0.171 0.985
CRP(35) 0.110 0.671 0.167 0.110 0.287 0.397 0.147 0.223 0.691
CRP(55) 0.092 0.626 0.150 0.092 0.244 0.388 0.124 0.187 0.693
CRP(75) 0.076 0.550 0.143 0.076 0.172 0.459 0.106 0.136 0.840
CRP(95) 0.044 0.472 0.099 0.044 0.081 0.546 0.066 0.058 1.180

Table 3.2. Overview over the various quality measures for different types of chroma features
(feature rate ≈ 2 Hz, η = 100).

average quotient amounts to α = 0.3205. Other conventional chroma features exhibit a
larger average cost for the true matches such as µT = 0.120 for Chroma-Pitch. However,
in this case the average distance within the false alarm region also increases remarkably
amounting to µF = 0.433. As a result, the average quotient of α = 0.282 for Chroma-
Pitch is lower thus expressing a higher discrimination capability than the one for Chroma-P.
Now, looking at the quality measures for the novel CRP(n) features, one can recognize a
significant improvement. For example, in the case n = 55 one obtains α = 0.150, which is
nearly half of α = 0.282 obtained from Chroma-Pitch. In other words, the discrimination
capability of CRP(55) features is nearly twice as good as in the case of Chroma-Pitch.

According to the measure α, the CRP(n) features seem to perform best for the parameter
n = 95 among all selected parameters listed in Table 3.2. However, looking at the γ-
measure, one obtains γ = 1.180 for n = 95, which is much worse than γ = 0.693 for
n = 55. As already noted in Section 3.2.2, the α-measure does not warrant a clear
separation between true matches and spurious matches. In contrast, the γ-measure yields
an explicit separation distance, but may be corrupted by a single outlier. In the following,
the main focus is on the β-measure using only the lower p = 1% of the indices in the false
alarm region, which constitutes a suitable compromise between the α- and γ-measure, see
Section 3.2.2.

With respect to the β-measure, the CRP(55) features with β = 0.388 perform best among
all listed feature types. For the best conventional feature (Chroma-Pitch), one already
has β = 0.568. The difference between CRP(35) and CRP(55) is not significant. Here,
the parameter n = 55 may be preferable since less coefficients are needed to yield the
same discriminative power. In the next section, we investigate the role of the reduction
parameter n ∈ [1 : 120] in more detail.

3.3.3 Dependency on DCT Reduction

In the last section, we have compared and discussed the discrimination capability of various
conventional chroma features and of CRP(n) features for selected parameters n ∈ [1 : 120].

5Recall that the values are obtained by averaging over all queries. The average quotient α = 0.320 does
not coincide with the quotient of the averages µT/µF = 0.318.
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Figure 3.7. Influence of the parameter n ∈ [1 : 120] (horizontal axis) on the performance measures
(a) α, (b) β, and (c) γ. The range of each vertical axis has been limited to show more details of
the relevant parts of the respective curve.

We now look closer at the role of this parameter, which determines the number of PFCCs
to be pruned in the reduction step, see Section 3.1.2. To this end, we compute the quality
measures α, β, and γ in dependence of n ∈ [1 : 120]. The resulting curves are shown in
Figure 3.7. The curve for α may indicate that the discriminative power, in average, is
optimal for parameters n ∈ [83 : 99]. However, as already discussed in Section 3.3.2, a
low α-measure does not warrant a clear separation between true matches and spurious
matches. More meaningful indicators are the β- and γ-measures. Here, the corresponding
curves show that one obtains the best separation between true and spurious matches for
parameters n ∈ [23 : 59]. In the following experiments, we use the parameter n = 55, which
exhibits low values with respect to all three quality measures. Actually, in Section 3.4,
we will discuss the musical meaning of a small number of dominant PFCCs, which also
explains the “jumps” in the curves of Figure 3.7. These findings can then be used to further
reduce the number of coefficients without a degradation of the discriminative power.

3.3.4 Dependency on Logarithmic Compression

It is a well-known fact that loudness is perceived in a logarithmic fashion [199]. Therefore,
after a suitable decomposition of the audio signal, one often applies a logarithmic energy
or amplitude compression. For example, such a step is involved in the computation of
MFCCs [103] or in deriving onset signals as used for beat tracking and meter analysis [91].
In Section 3.1.2, we employed such a compression step after the subband decomposition
replacing each entry e in the resulting pitch representation by the value log(η · e + 1).
To investigate the role of the positive constant η, we compute CRP(55) features using
different constants η and derived the corresponding quality measures α, β, and γ. From
these measures, which are listed in Table 3.3, we conclude that for any choice of η between
10 and 1000 one obtains features of a similar quality. In the following experiments, we
therefore use the value η = 100. Similar findings are reported by Klapuri et al. [91].
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η µT µF α µT µ1%
F β maxT minF γ

1 0.114 0.654 0.179 0.114 0.279 0.414 0.155 0.219 0.718
10 0.098 0.642 0.156 0.098 0.258 0.389 0.133 0.199 0.686

100 0.092 0.626 0.150 0.092 0.244 0.388 0.124 0.187 0.693
1000 0.089 0.606 0.151 0.089 0.234 0.397 0.120 0.180 0.705

10000 0.089 0.583 0.157 0.089 0.226 0.412 0.119 0.173 0.733
100000 0.087 0.557 0.162 0.087 0.216 0.425 0.116 0.166 0.758

Table 3.3. Influence of the parameter η used in the logarithmic compression on the quality of
CRP(55) features.

µT µF α µT µ1%
F β maxT minF γ

10 Hz 0.121 0.642 0.191 0.121 0.315 0.384 0.159 0.253 0.633
5 Hz 0.107 0.636 0.171 0.107 0.291 0.374 0.143 0.229 0.637
2 Hz 0.092 0.626 0.150 0.092 0.244 0.388 0.124 0.187 0.693
1 Hz 0.083 0.619 0.138 0.083 0.197 0.443 0.112 0.147 0.827

0.5 Hz 0.074 0.625 0.123 0.074 0.154 0.513 0.106 0.110 1.061

Table 3.4. Influence of the feature rate on the quality of CRP(55) features.

Another approach used for dynamics compression is referred to as spectral whitening. The
author implemented a version of the whitening procedure similar to [90] locally normaliz-
ing the pitch subbands obtained from the filterbank decomposition according to short-time
variances of the subbands. Actually, this procedure is related to the logarithmic ampli-
tude compression as both flatten (or whiten) the spectral energy distribution. Indeed,
using spectral whitening instead of logarithmic compression did not have a significant im-
pact on the various quality measures. Therefore, in the following, we only consider the
algorithmically simpler logarithmic compression.

3.3.5 Dependency on Feature Rate

Next, we investigate the influence of the features rate on the final quality of CRP(n)
features. Table 3.4 only reports on the results for the parameter n = 55 as other feature
types were found to show a similar behavior. Recall from Section 3.1.2 that the final
feature rate can be adjusted by modifying the size of the rectangular window used to
compute the local energies in the pitch subbands. With respect to the β- and γ-measure,
the resulting CRP features perform almost equally well for feature rates ranging from
10 Hz down to 2 Hz. However, further decreasing the feature rate results in noticeable
degradations. For example, one has β = 0.374 for 5 Hz and a slightly higher β = 0.388
for 2 Hz, whereas the value significantly drops to β = 0.443 for 1 Hz. In the following
experiments, we therefore revert to the feature rate of 2 Hz. In comparison to higher
features rates, 2 Hz features not only possess a comparable quality, but also keep the data
at a manageable size, thus making the subsequent steps in the matching procedure more
efficient.
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Figure 3.8. Different distance functions using the excerpt F3 as query with respect to the binary
shift measure cbs, continuing the example from Figure 3.6. The following feature types were used:
Chroma-IF (thin green), Chroma-Pitch (blue) and CRP(55) (bold black).

3.3.6 Dependency on Cost Measure

So far, we have used the cosine measure as cost measure to compare two chroma vectors.
Only recently, Serrà et al. [164] have introduced a novel binary cost measure that only
assumes two values. Basically, the idea is to consider all cyclically shifted versions of the
two vectors to be compared [61]. Then, the two original chroma vectors are regarded
as similar (binary cost measure assumes the value 0) if they best correlate without any
shift relative to each other, otherwise they are regarded as dissimilar (binary cost measure
assumes the value 1). This cost measure has turned out to be suitable in global matching
tasks such as cover song identification [164]. A similar concept considering minimizing
shift indices has been introduced in the context of music structure analysis, see [118].

In this section, we first define a binary cost measure similar to [164], which we refer to
as binary shift measure. Then, we show that CRP features also yield significant quality
improvements in combination with this novel cost measure. In the following, all chroma
vectors are assumed to be normalized with respect to the Euclidean norm. As in Sec-
tion 3.2.1, let F = [0, 1]12 denote the feature space and c : F ×F → R the cosine measure.
We define the cyclic shift σ : F → F by

σ((v(1), v(2), . . . , v(12))) := (v(2), . . . , v(12), v(1))

for a chroma vector v = (v(1), . . . , v(12)) ∈ F . By iteratively applying σ, one obtains σi,
i ∈ N0, where i is referred to as the shift index. Obviously, σ12 = σ0 is the identity on F .
Now, when comparing two chroma vectors v, w ∈ F , one first computes the minimizing
shift index:

msi(v, w) := argmini∈[0:11]

(
c(v, σi(w))

)
.

Then, the binary shift measure cbs : F × F → {0, 1} is defined by

cbs(v, w) :=

{
0 for msi(v, w) = 0,
1 for msi(v, w) 6= 0.

We now repeat the computation of the quality measures α, β, and γ, where we use the
binary shift measure cbs instead of c. The result is shown in Table 3.5. There are several
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µT µF α µT µ1%
F β maxT minF γ

Chroma-IF 0.171 0.528 0.327 0.171 0.283 0.598 0.233 0.215 1.081
Chroma-P 0.069 0.558 0.124 0.069 0.264 0.256 0.121 0.189 0.633
Chroma-E 0.087 0.552 0.159 0.087 0.275 0.312 0.142 0.203 0.689
Chroma-MIR 0.089 0.525 0.171 0.089 0.222 0.408 0.142 0.148 1.135
Chroma-QM 0.151 0.531 0.289 0.151 0.286 0.527 0.215 0.211 1.071
Chroma-Pitch 0.091 0.583 0.160 0.091 0.231 0.431 0.164 0.152 1.220
CRP(35) 0.011 0.572 0.019 0.011 0.126 0.115 0.029 0.060 1.710
CRP(55) 0.011 0.570 0.019 0.011 0.123 0.097 0.031 0.057 1.246
CRP(75) 0.029 0.574 0.052 0.029 0.140 0.227 0.076 0.061 3.371
CRP(95) 0.058 0.580 0.101 0.058 0.139 0.416 0.108 0.052 6.694

Table 3.5. Overview over the quality of various feature types employing the binary shift measure
in the matching process.

interesting observations. First, it is striking that for all features types the α-measures
with respect to cbs are much lower than the ones with respect to c (compare Table 3.5 and
Table 3.2). Second, also using cbs as cost measure, the CRP(n) features by far outperform
conventional chroma features with respect to the α- and β-measure. Again, the parameter
n = 55 leads to very good overall results. For example, one has β = 0.097 for CRP(55)
using cbs, which yields the lowest β-value among the listed feature types.

At first sight surprisingly, the behavior of the γ-measure is quite different. Here, when
using cbs instead of c, conventional chroma features seem to be superior to CRP features.
This can be explained as follows. Recall from Section 3.2.2 that the γ-measure suffers in
the sense that a single outlier may completely corrupt the value of γ. Now, the binary shift
measure cbs assuming only the two values zero and one is a rather coarse measure compared
to the cosine measure c. As a consequence, the distance function ∆ typically decreases
in regions that are harmonically related to the query (but it may even increase in regions
that are harmonically unrelated to the query). On the positive side, this generally lowers
the cost of true matches. On the negative side, this often produces a few (not necessarily
many) false positive matches of quite low cost. These false positive matches corrupt the
γ-measure, but do not have such a large effect on the β-measure. This phenomenon is also
illustrated by Figure 3.8 (continuing the Indigo Girls example shown in Figure 3.6), where
the binary shift measure cbs is employed instead of c. Note that the cbs-based distance
functions yield a much better average separation (almost all true matches have a cost very
close to zero) than the c-based counterparts. However, in particular in the original version,
the cbs-based distance function dangerously approaches zero at some positions within the
false alarm regions.

3.3.7 Effect on Precision and Recall

To indicate the potential of the CRP features for music retrieval applications, we investi-
gate the effect of the proposed enhancement strategy in terms of precision and recall values.
In the following experiment, we use the queries and the manually annotated database from
Section 3.3.1. The annotations constitute the ground truth on the exact positions of the
true (relevant) matches for each query. Now, for a fixed feature type, we compute the
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Figure 3.9. Quality of several feature types in terms of precision (vertical axis) and recall
(horizontal axis) values. (a) PR-diagrams when using the cosine measure c. (b) PR-diagrams
when using the binary shift measure cbs. The dot within a PR-diagram indicates the respective
maximal F-value Fmax.

distance function ∆ for each of the queries. Then, for a given positive distance threshold
τ , we subsequently derive all matches having a cost below τ as described in Section 3.2.1.
Using the ground truth information, we then compute the precision value Pτ and the recall
value Rτ for the set of retrieved matches. From these values one obtains the F-measure
Fτ := 2·PτRτ

Pτ+Rτ
. Starting with a threshold τ close to zero and increasing it little by little, one

obtains a family of precision (P) and recall (R) values, which can be graphically visualized
by a PR-diagram.

Figure 3.9(a) shows three representative PR-diagrams for two conventional chroma fea-
tures (Chroma-IF, Chroma-Pitch) and for the CRP(55) features. As the diagrams indi-
cate, one obtains much better PR-values using the enhanced CRP features than in the
case of conventional chroma features. A good indicator for this is the maximal F-value
Fmax := maxτ (Fτ ), which is indicated by a dot within the respective PR-diagram in Fig-
ure 3.9. In our experiments, one obtains Fmax = 0.70 and Fmax = 0.69 for the conventional
chroma features Chroma-IF and Chroma-Pitch, respectively. On the other hand, one ob-
tains Fmax = 0.91 for the CRP(55) features, which is an improvement of more than 30%
over the conventional features.

Finally, Figure 3.9(b) shows the corresponding PR-diagrams using the binary shift mea-
sure cbs instead of the cosine measure c. Also in this case, the CRP(55) features still
outperform the conventional features, in particular with regard to recall. However, as
explained in Section 3.3.6, there tend to be a notable number of false positives when using
cbs, which is also reflected in the PR-diagrams. For example, when using CRP(55) features
in combination with cbs, there are already quite a number of false positive matches having
cost zero. This experiment also indicates that the binary shift measure, even though being
a very powerful tool in global matching scenarios, tends to be too coarse for local matching
scenarios, see Section 3.2.
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Figure 3.10. Entries ȳ(m) of the vector ȳ for m ∈ [1 : 120] (horizontal axis). The value ȳ(m)
indicates the average absolute correlation of the normalized pitch vectors of the database recordings
with the DCT basis vector cm.

3.4 Detailed Analysis

This section gives a detailed analysis of the DCT-based reduction step, which plays a cen-
tral role in the CRP enhancement procedure. In Section 3.4.1, we show that for harmony-
based music the upper PFCCs are dominated by a few dominating coefficients. As it turns
out, these coefficients correspond to pitch periodicities that allow for a musically meaning-
ful interpretation (Section 3.4.2). Furthermore, we show that the PFCCs surrounding the
dominating ones account for different phases or pitch transpositions (Section 3.4.3).

3.4.1 Relation of DCT Basis Vectors to Pitch Vectors

For CRP features, the logarithmized pitch vectors are transformed by means of a discrete
cosine transform (DCT). This transform is represented by an orthogonal 120×120 matrix
denoted by DCT120, where the mth row of DCT120 can be thought of as a 1-sampled
cosine function of frequency freq(m) = m−1

2·120 , m ∈ [1 : 120]. In the following, this vector
is denoted by cm and referred to as the mth DCT basis vector. The period of cm is given
by period(m) = 1

freq(m) . Now, computing the matrix-vector product y = DCT120 · x for a

pitch vector x ∈ R
120, the mth coefficient y(m) of y expresses to which degree x and cm

correlate.

To get some hints on a possible semantic meaning of the DCT basis vectors, the following
experiment was conducted. First, logarithmized pitch vectors as described in Section 3.3
were computed for each audio recording of the database (Section 3.3.1). After normalizing
each of these vectors with respect to the Euclidean norm, a DCT was applied to obtain
PFCC vectors. Then, each entry of these coefficient vectors was replaced by its absolute
value. Finally, all resulting vectors were averaged over the entire database to obtain a single
120-dimensional vector, say ȳ. This vector is shown (in a horizontal form) in Figure 3.10.
The entry ȳ(m) can be interpreted to represent the average absolute correlation of the
normalized pitch vectors with the DCT basis vector cm.

The lower PFCCs, which are related to loudness and timbre, are left unconsidered in
the CRP features, and we also disregard them in the following analysis. As revealed
by Figure 3.10, some of the upper PFCCs indicate that certain DCT basis vectors show
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DCT basis vector c21 c41 c61 c81 c101 c120

frequency 0.083 0.167 0.250 0.333 0.417 0.496

period 12 6 4 3 2.4 ≈ 2

Table 3.6. Frequency and period for selected DCT basis vectors.

a strikingly high average correlation with the pitch vectors. This particularly holds for
all DCT basis vectors cm with m ∈ S := {41, 61, 81, 101, 120}. Actually, as seen from
Table 3.6, all these basis vectors are 12-periodic (or nearly 12-periodic in the casem = 120).

3.4.2 Musical Meaning of Dominating DCT Basis Vectors

The dominance of the 12-periodic DCT basis vectors does not come all of a sudden, but
originates from certain musical properties of the underlying audio material. We now give
some explanations for this dominance. Recall that the CRP enhancement strategy is
based on the pitch-frequency scale, which has a much closer relation to harmony-based
music than the mel-frequency scale. In our setting, the DCT basis vectors capture certain
periodicities of a pitch vector along the 120-dimensional pitch scale. The 12-periodicity
is strongly connected to the octave interval that plays a crucial role in musical sounds
and harmony-based music [5]. First, playing a musical note on an instrument typically
produces a sound involving several frequencies known as harmonics, where the harmonics
are integer multiples of the fundamental frequency. Since many of the harmonics are in an
octave relationship, a pitch vector computed from a musical sound typically contains some
quasi-periodic patterns of period 12. Second, Western music is often based on the use of
specific chords, i. e., pattern of notes that are played simultaneously. Typical examples are
major and minor 3-chords or major seventh 4-chords. Also the tonic-dominant relationship
plays a fundamental role in Western harmony-based music. This implies the importance
of certain pitch intervals including the fifth (pitch distance 7), the fourth (pitch distance
5), the major third (pitch distance 4), the minor third (pitch distance 3), and the octave
(pitch distance 12).

Because of these two reasons—the nature of harmonics and the nature of harmony-based
music—the pitch vectors derived from such music recording often exhibit quasi-periodic
patterns, which are captured by the dominant DCT coefficients. To illustrate this fact, we
discuss the result of some experiments similar to the one described in Section 3.4.1. Instead
of using pitch vectors from real audio recordings, the experiment employs constructed sets
of pitch vectors that correspond to specific harmonic chords. For example, the C-major
chord is represented by a pitch vector where all entries are set to one that correspond
either to pitch class C, E, or G; all other entries were set to zero. Other chords are
represented in the same fashion. Now, using the set of pitch vectors covering all major
chords, we compute the average absolute correlation vector ȳ. The resulting vector ȳ,
which is shown Figure 3.11(a), clearly exhibits the dominance of cm for m = 61, m = 81,
and m = 101. Here, the basis vector c61 accounts for the major third (distance 4) and
c81 for the minor third (distance 3). Interestingly, the basis vector c101 of period 2.4
accounts for the tonic-dominant relationship, which is based on a fifth (distance 7) and
a fourth (distance 5) to the next octave. Here, note that twice the period 2.4 picks up
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Figure 3.11. Average absolute correlation of the pitch vectors of various sets with the DCT
basis vectors cm for m ∈ [1 : 120]. (a) Major 3-chords. (b) Minor 3-chords. (c) Tonic/dominant
2-chords. (d) Major seventh 4-chords.

µT µF α µT µ1%
F β maxT minF γ

CRP(55) 0.092 0.626 0.150 0.092 0.244 0.388 0.124 0.187 0.693
CRP(S) 0.105 0.667 0.158 0.105 0.249 0.459 0.145 0.199 0.799
CRPsin(S) 0.112 0.673 0.169 0.112 0.290 0.397 0.150 0.225 0.696

CRP(S) 0.110 0.677 0.165 0.110 0.292 0.387 0.148 0.227 0.682

Table 3.7. Quality measures for various CRP variants.

the fourth (distance 4.8 ≈ 5) and three times the period 2.4 picks up the fifth (distance
7.2 ≈ 7). Similar experiments were conducted with a set of minor 3-chords, a set of
tonic-dominant 2-chords, and a set of major-seventh 4-chords, see (b)-(d) of Figure 3.11.
For example, Figure 3.11(d) reveals a striking dominance of c81 of period 3, which indeed
reflects the importance of the minor third in seventh chords. Finally, the basis vector
c120 of approximate period 2 accounts for the dominance of whole steps (distance 2) in
harmonic chords. Finally, we emphasize that the 12-periodic basis vectors cm for m ∈
S = {41, 61, 81, 101, 120} additionally account for the octave relationship. This not only
explains the musical importance of these basis vectors but also the “jumps” in the curves
of Figure 3.7 at the corresponding index positions.

3.4.3 Phase Shift Simulation by DCT Basis Vectors

So far, we have seen that the DCT basis vectors cm for m ∈ S capture the musically
important pitch periodicities. At this point, one may assume that a reduction using only
the few dominating DCT basis vectors may yield a similar enhancement than using the
entire range of upper PFCCs. To investigate this assumption, we conduct the following
experiment. In the construction of the CRP features, we only keep the five PFCCs cor-
responding to the set S and discard the other 115 PFCCs by setting them to zero. We
then apply the inverse DCT, the chroma binning, and the normalization as before, see
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Figure 3.12. (a) DCT basis vector c21. (b) DCT basis vector c20. (c) Phase-shifted version of
c21 shifted by π/2. Note that the vectors shown in (b) and (c) nearly coincide in the part between
the two gray vertical lines.

Figure 3.1. The resulting features are referred to as CRP(S) features. Table 3.7 shows
the results of our various quality measures for the CRP(S) features. Even though the
CRP(S) features achieve some improvement over conventional chroma features (cf. Ta-
ble 3.2), there is a significant degradation in the β- and γ-measures compared to CRP(55)
features. For example, one has β = 0.388 for CRP(55) features, whereas β = 0.459 for
CRP(S) features (Table 3.7).

The main reason for this degradation can be explained as follows. First, recall that a DCT
basis vector is obtained by sampling a suitable cosine function of certain frequency and
phase. Using only one DCT basis vector of a fixed phase for a specific pitch periodicity, one
is not able to deal with phase shifts, which can be interpreted as pitch transpositions in our
scenario. For example, the DCT basis vector c101 is able to capture periodicities stemming
from a C-major chord, but has difficulties in capturing the same periodicities in the case
of a D-major chord. One can deal with phase shifts as is done in Fourier analysis [116]:
one simply complements each DCT basis vectors by an additional phase-shifted (shifted by
π/2) duplicate. In our scenario, we introduce an additional phase-shifted basis vector sm
for each DCT basis vector cm, m ∈ S. Here, sm is obtained by sampling a sine function
that corresponds to the cosine function used to obtain cm. Now, we project the pitch
vectors onto the space spanned by the ten basis vectors cm and sm, m ∈ S. (Before,
we only used the five vectors cm.) Then, we continue with the usual chroma binning
and normalization to obtain features denoted by CRPsin(S). As shown by Table 3.7, the
CRPsin(S) features exhibit much better β- and γ-measures than the CRP(S) features and
qualitatively come up to the original CRP(55) features.

Finally, we investigate how this phase shift information is recovered in the case of the
purely cosine-based CRP(n) features. Looking at Figure 3.10 and Figure 3.11, one can
notice that the dominating PFCCs corresponding to the DCT basis vectors cm, m ∈ S,
are flanked at both sides by further relevant PFCCs. Exemplarily, we look at c21 and
its adjacent basis function c20, see (a) and (b) of Figure 3.12. The two underlying cosine
functions differ only slightly in their frequency. As a consequence, c20 behaves like a phase-
shifted version of c21 in the middle part of the pitch scale. In this part, the vector c20
nearly coincides with s21, cf. (b) and (c) of Figure 3.12. In other words, phase-shifts in the
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middle part of the pitch scale are simulated by DCT basis vectors with a slightly changed
frequency. This property is particularly important in view of real-world music recordings,
where most of the energy is concentrated in the middle part of the pitch scale. We close
our discussion by a final experiment, which reinforces these explanations. Here, we use in
the reduction step the set S := {40 : 42, 60 : 62, 80 : 82, 100 : 102, 119 : 120} instead of
the set S. The resulting features, which are denoted as CRP(S) features, indeed exhibit
a similar β- and γ-measure as the CRPsin(S) and the CRP(55) features, see Table 3.7.

3.5 Conclusions

This chapter introduced a novel enhancement procedure for significantly increasing the
robustness of conventional chroma features to changes in timbre and instrumentation.
Here, the main ideas were first to compute cepstral coefficients based on a pitch-frequency
scale, second to discard the lower PFCCs, and third to deduce from the remaining upper
PFCCs the chroma-based CRP features. As it turned out, the upper PFCCs are dominated
by only a few coefficients that reflect harmonically relevant pitch-periodicities as prominent
in Western music. Revealing the musical meaning of certain PFCCs not only puts the
procedure in a nutshell, but also allows for further reducing the number of PFCCs without
a degradation of the discriminative power of the resulting CRP features.

Extensive experiments showed that the proposed enhancement strategy yields a significant
boost towards timbre invariance independent of a particular choice of parameters and mea-
sures. Using the novel CRP features, one can significantly improve the performance in all
those matching and classification applications, where one wants to be invariant with re-
gard to instrumentation and tone color. Exemplarily, this was shown for an audio retrieval
application, where precision and recall values substantially increased when using CRP fea-
tures instead of conventional chroma features. For the future, it will be interesting to apply
CRP features also for other MIR tasks such as cover song identification [38, 164], struc-
ture analysis [65,127,145,157], and cross-domain music matching [54,147]. Other authors
already reported on good results using CRP and PFCC features for structure analysis [6],
chord recognition [15, 81], instrument classification [76], and music synchronization [101].

Generally, the direct comparison of audio features as well as the assessment of the features’
properties is a difficult and time-consuming problem. Here, as a further conceptual con-
tribution of this chapter, the proposed evaluation framework constitutes a powerful tool
for comparing and studying the behavior of audio features in a compact form and system-
atic way. Using a DTW-based distance function, this chapter introduced various quality
measures that express separation and matching capabilities on the basis of real-world mu-
sic material. Note that the musical meaning of the measures very much depend on the
particular choice of the underlying audio material. For the evaluation, music recordings
were carefully selected and annotated to obtain quality measures that indicate the degree
of timbre invariance exhibited by the respective feature type. By suitably changing the
audio material and the annotations, the framework can easily be adjusted to also facilitate
the evaluation of audio features with regard to other musical aspects such as timbre (not
timbre-invariance), rhythm, or melodic similarity.
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Music Synchronization
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Chapter 4

Alignment Methods

As a result of massive digitization efforts, there is an increasing number of relevant digital
documents for a single musical work comprising audio recordings, MIDI files, digitized
sheet music, music videos, and various symbolic representations. In order to coordinate
the multiple information sources related to a given musical work, various alignment and
synchronization procedures have been proposed with the common goal to automatically
link several types of music representations, see [1,21,28,29,31,55,75,96,116,129–131,152,
154, 163, 164, 174, 181, 187]. Potential applications of synchronization techniques include
automatic score following [20, 21, 28, 29, 36, 163], audio segmentation [152], cover song
identification [164] and cross-modal music retrieval [75, 96, 129]. In general terms, music
synchronization denotes a procedure which, for a given position in one representation of
a piece of music, determines the corresponding position within another representation.
Depending upon the respective data formats, one distinguishes between various synchro-
nization tasks [2, 116]. For example, audio-audio synchronization [31, 131, 181] refers to
the task of time aligning two different audio recordings of a piece of music. These align-
ments can be used to jump freely between different interpretations, thus affording efficient
and convenient audio browsing. The goal of score-audio and MIDI-audio synchroniza-
tion [2,28,130,154,174] is to coordinate note and MIDI events with audio data. The result
can be regarded as an automated annotation of the audio recording with available score
and MIDI data. A recently studied problem is referred to as sheet music-audio synchro-
nization [96], where the objective is to link regions (given as pixel coordinates) within the
scanned images of given sheet music to semantically corresponding physical time positions
within an audio recording. Such linking structures can be used to highlight the current
position in the scanned score during playback of the recording. Similarly, the goal of
lyrics-audio synchronization [55, 89, 129] is to align given lyrics to an audio recording of
the underlying song. For an overview of related alignment and synchronization problems,
see also [29, 116,119].

Computational and algorithmic challenges for music synchronization approaches arise in
particular from the complexity and diversity of music data. For example, the music repre-
sentations to be aligned might differ in terms of the local tempo, the instrumentation, or
the overall dynamics. Variations in the musical structure or the polyphony and differences
in the realization of trills and arpeggios add further complexity to the already difficult
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task. In this chapter, we summarize basic alignment techniques that underlie most state-
of-the-art synchronization approaches. It is one goal of this chapter to give a unifying
view on these approaches while highlighting the conceptual differences. In chapters 5, 6,
and 7, we will develop novel methods based on the techniques presented in this chapter
and improve upon them in terms of accuracy, efficiency, reliability, and robustness.

Most alignment and synchronization procedures proceed in three basic steps. In the first
step, the data streams to be aligned are converted to a suitable feature representation.
Then, a local cost measure is used to compare features from the two streams. Finally,
based on this comparison, the actual synchronization result is computed using a suitable
alignment strategy. For synchronizing several versions or representations of a piece of mu-
sic, chroma-based features and contextual cost measures have proven to be suitable tools,
which are reviewed in Section 4.1. Then, in the remainder of this chapter, we focus on the
third step and describe three conceptually different alignment strategies: dynamic time
warping (Section 4.3), a recursive version of the Smith-Waterman algorithm (Section 4.4),
and partial matching (Section 4.5). While these three approaches share similar algorithmic
roots (dynamic programming) and possess a close mathematical modeling (Section 4.2),
they produce fundamentally different types of alignments, see also Section 4.6. For a
discussion of these differences we consider in the following the case of MIDI-audio synchro-
nization. As a running example, we use a MIDI version and an audio recording for the
song ‘And I love her’ by the Beatles. However, our findings also hold for other cases such
as audio-audio synchronization.

4.1 Feature Representation and Cost Measure

To compare different versions of a same song, we convert both representations into a
common mid-level representation. Depending on the type of this representation, the com-
parison can be based on musical properties such as harmony, rhythm or timbre. In the
subsequent discussion, we employ normalized 12-dimensional chroma features as described
in Chapter 2 with a temporal resolution of 2 Hz (2 features per second). Such feature
rates have also turned out to be suitable for related tasks such as audio matching [128]
and cover song detection [164]. Let V := (v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ) be
two chroma feature sequences. To relate two chroma vectors, we use the cosine distance
defined by c(vn, wm) = 1−〈vn, wm〉 for normalized vectors. By comparing the features of
the two sequences in a pairwise fashion, one obtains an (N ×M)-cost matrix C defined
by C(n,m) := c(vn, wm), see Figure 4.1a. Each tuple (n,m) is called a cell of the matrix.
To increase the robustness of the overall alignment procedure, it is often beneficial to also
include the local temporal evolution of the features in order to enhance the structural
properties of a cost matrix. To this end, Foote [51] proposed to average the cost values
from a number of consecutive frames and to use that as the new cost value. This results in
a smoothing effect of C. Müller and Kurth [126] extended these ideas by suggesting a con-
textual distance measure that allows for handling local tempo variations in the underlying
audio recording. The enhancement procedure can be thought of as a multiple filtering
of C along various directions given by gradients in a neighborhood of the gradient (1, 1),
see [116, 126] for further details. We denote the smoothed cost matrix again by C. The
degree of smoothing depends on a parameter λ, which specifies the number of consecutive
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frames taken into account for the filtering. The role of this parameter will be discussed in
Section 5.3. For an example see Figure 4.1c.

4.2 General Concepts

We now introduce some common mathematical notations that are shared by all three align-
ment procedures to be discussed. Generally, an alignment between the feature sequences
V := (v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ) is regarded as a set A ⊆ [1 : N ]× [1 : M ],
where [1 : N ] is a shorthand for {1, 2, . . . , N}. Here, each cell π = (n,m) ∈ A encodes
a correspondence between the feature vectors vn and wm. By ordering its elements lexi-
cographically A takes the form of a sequence, i. e., A = (π1, . . . , πL) with πℓ = (nℓ,mℓ),
ℓ ∈ [1 : L]. Additional constraints on the set ensure that only musically meaningful
alignments are permitted. We say that the set A is monotonic if

n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤ . . . ≤ mL.

Similarly, we say that A is strictly monotonic if

n1 < n2 < . . . < nL and m1 < m2 < . . . < mL.

Note that the monotonicity condition reflects the requirement of faithful timing: if an
event in V precedes a second one this also should hold for the aligned events in W . A
strictly monotonic set A will also be referred to as match, denoted by the symbolM = A.
To ensure certain continuity conditions, we introduce step-size constraints by requiring

γℓ+1 − γℓ ∈ Σ

for ℓ ∈ [1 : L − 1], in which Σ denotes a set of admissible step sizes. A typical choice is
Σ = Σ1 := {(1, 1), (1, 0), (0, 1)} or Σ = Σ2 := {(1, 1), (2, 1), (1, 2)}. A set A that fulfills
the step-size condition is also referred to as path denoted by the symbol P = A. Note
that when using Σ1 the set A also becomes monotonic allowing a relatively high degree
of flexibility in the alignment path. Using Σ2 instead typically results in more restricted
alignments with additional slope constraints, which, on the positive side, often introduces
a higher degree of robustness. As final constraint, the boundary condition

γ1 = (1, 1) and γL = (N,M),

ensures in combination with a step-size condition the alignment of V and W as a whole.
If both the step-size as well as the boundary condition hold for a set A, then A will be
referred to as global path (or warping path) denoted by G. Finally, a monotonic set A
is referred to as family of paths, denoted by F , if there exist paths P1,P2, . . . ,PK with
F = A =

⋃
k∈[1:K] Pk.

4.3 Dynamic Time Warping

If it is known a-priori that the two sequences to be aligned correspond to each other
globally then a global path is the correct alignment model. Here, classical dynamic time
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Figure 4.1. Several techniques for the alignment of an audio recording (vertical axis) and a
MIDI version (horizontal axis) of the song ‘And I love her’ by the Beatles. The marked regions are
further discussed in the text. (a) Chroma-based cost matrix. (b) Optimal global path obtained
via DTW based on the chroma cost matrix. (c) Smoothed cost matrix C using λ = 12. (d)
Optimal global path obtained via DTW based on matrix C. (e) Score matrix S. (f) Family of
paths obtained via Smith-Waterman based on matrix S. (g) Thresholded score matrix S≥0. (h)
Optimal match obtained via partial matching based on matrix S≥0.
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warping (DTW), which has originally been used to compare different speech patterns in
automatic speech recognition [150], can be used to compute a global path. In this context,
the cost of an alignment A is defined as cA(V,W ) :=

∑L
ℓ=1C(nℓ,mℓ). Then, after fixing

a set of admissible step-sizes Σ, DTW yields an optimal global path having minimal cost
among all possible global paths. More exactly, the DTW distance between V and W is
defined as

DTW (V,W ) := min{cG(V,W ) | G is a global path between V and W}

An optimal global path G∗ is a global path having minimal cost, i.e. cG∗(V,W ) = DTW (V,W ).
To compute an optimal global path, a brute force method could consider each possible
global path. However, since the number of possible global paths exponentially increases
in N and M , this is not feasible in practice. Using dynamic programming techniques, one
can reduce the computational complexity to O(NM). To this end, we define the prefix se-
quences V (1 : n) := (v1, . . . , vn) with n ∈ {1, . . . , N} and W (1 : m) := (w1, . . . , wm) with
m ∈ {1, . . . ,M} for V and W , respectively. Then, we can define the accumulated cost
matrix D ∈ R

N×M via D(n,m) := DTW (V (1 : n),W (1 : m)). Using step size condition
Σ1, one can show [116] that D can be computed in O(NM) arithmetic operations using
the following recursion:

D(n,m) := min





D(n− 1,m) + C(n,m),
D(n,m− 1) + C(n,m),
D(n− 1,m− 1) + C(n,m)

The recursion is well-defined using the definitionsD(1, 1) := C(1, 1),D(n, 1) :=
∑n

k=1C(k, 1)
for n ∈ {1, . . . , N} and D(1,m) :=

∑m
k=1C(1, k) for m ∈ {1, . . . ,M}. For other step size

conditions, such as Σ2, matrix D can be computed in a similar way [116]. Starting with
D(N,M), one can compute an optimal global path G∗ by tracking the minimizing argu-
ment in the recursive definition of D. For more details on DTW in a musical context,
see [116].

For the subsequent discussion, we use A(s, t) to refer to the segment in the audio recording
starting at s seconds and terminating at t seconds. Similarly, M(s, t) refers to a MIDI
segment. So listening to M(55, 65) of the song ‘And I love her’ (used throughout Figure 4.1)
reveals a short bridge in the song. However, in the particular audio recording used here the
bridge is omitted. Since DTW always aligns the sequences as a whole we find a musically
inappropriate alignment between A(40, 42) and M(48, 65), see also the marked region in
Figure 4.1d. A similar observation can be made at the beginning and the end of the
optimal global path. Here, the intro and outro in the audio recording deviate strongly
from those in the MIDI version.

4.4 Recursive Smith Waterman

In general, using DTW in the case that elements in one sequence do not have suitable coun-
terparts in the other sequence is problematic. In particular, in the presence of structural
differences between the two sequences, this typically leads to misalignments. Therefore, if
it is known a-priori that the two sequences to be aligned only partially correspond to each
other, a path or a family of paths allows for a more flexible alignment than a global path.
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(a) (b)

(c) (d)

Figure 4.2. First steps of our recursive Smith-Waterman variant. (a) Optimal path P derived
via classical Smith-Waterman. (b) Submatrices defined via P. (c) Result after the first recursion.
Optimal paths have been derived from the submatrices. (d) New submatrices for the next recursive
step are defined.

To align two sequences that correspond only locally to each other, one can deploy the
Smith-Waterman algorithm—a well-known technique originally used in biological sequence
analysis [146, 173]. In the music context, this algorithm has also been successfully used
for the task of cover song identification [164]. Instead of using the concept of a cost
matrix with the goal of finding a cost-minimizing alignment, one now uses the concept
of a score matrix with the goal to find a score-maximizing alignment. To obtain a score
matrix S from a cost matrix C, we fix a threshold τ > 0 and set S = τ − C. Figure 4.1e
shows a score matrix derived from the cost matrix shown in Figure 4.1c. The score of
an alignment A is defined as

∑L
ℓ=1 S(nℓ,mℓ). Then, after fixing a set of admissible step-

sizes Σ, the Smith-Waterman algorithm computes an optimal path having maximal score
among all possible paths. Cells of A having negative score are often referred to as gaps,
where one considers gap openings and gap extensions. Typically, such gaps are further
penalized by introducing additional gap-penalty parameters [146, 164]. In our setting, for
simplicity, we use a single gap parameter γ for openings as well as extensions. Then, this
parameter can be realized by a subtraction of γ from all negative entries in the score
matrix S. Using dynamic programming techniques, the Smith-Waterman algorithm can
be implemented similarly to DTW. To this end, we define an accumulated score matrix
T ∈ R

N×M , exemplarily using the step size condition Σ1, as

T (n,m) := max





T (n− 1,m) + δγ(S(n,m)),
T (n,m− 1) + δγ(S(n,m)),
T (n− 1,m− 1) + δγ(S(n,m)),
0
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where δγ : R→ R is defined as

δγ(x) = max

{
x, x ≥ 0
x− γ x < 0

.

The recursion is well-defined using the definitions T (1, 1) := max{S(1, 1), 0}, T (n, 1) :=
max{T (n − 1, 1) + δγ(S(n, 1)), 0} for n ∈ {1, . . . , N} and T (1,m) := max{T (1,m − 1) +
δγ(S(1,m)), 0} for m ∈ {1, . . . ,M}. For step size conditions other than Σ1, matrix T can
be computed in a similar way [164]. Starting with the entry in T having the maximal
value, one can compute an optimal path using backtracking techniques similar to DTW.

The original Smith-Waterman algorithm only delivers a single alignment path, which is
often not enough to encode a suitable alignment. Therefore, we now introduce a novel
recursive variant of the Smith-Waterman algorithm. First, we derive an optimal path P as
described above, see Figure 4.2a. Then, we define two submatrices in the underlying score
matrix S, see Figure 4.2b. The first matrix is defined by the cell (1, 1) and the starting
cell of P, and the second matrix by the ending cell of P and the cell (N,M). For these
submatrices, we call the Smith-Waterman algorithm recursively to derive another optimal
path for each submatrix, see Figure 4.2c. These new paths define new submatrices on which
Smith-Waterman is called again, see Figure 4.2d. This procedure is repeated until either
the score of an optimal path or the size of a submatrix is below a given threshold. This
results in a monotonic alignment set in form of a family of paths F . Figure 4.1f shows
a family of two paths derived from the score matrix in Figure 4.1e using our recursive
Smith-Waterman variant. Using this method, the missing bridge in the audio as well as
the different intros and outros in the audio and MIDI version are detected and, in this
example, the recursive Smith-Waterman approach avoids the misalignment of the DTW
case (Figure 4.1d).

While this example highlights some of the strengths of the Smith-Waterman algorithm,
it also illustrates one of its weaknesses. Listening to A(75, 83) and M(99, 107) reveals a
solo improvisation which differs in the audio and MIDI versions, so they should not be
aligned. Also, the corresponding area in the score matrix shows negative values. However,
the Smith-Waterman algorithm aligns these two segments as part of the second path, see
marked region in Figure 4.1f. The reason is that Smith-Waterman always tries to find the
path with maximum score, where even a small number (relative to the total length of the
path) of gaps are tolerated.

4.5 Partial Matching

As a third approach, we now describe a partial matching strategy, which gives the least
constrained alignment [2, 116, 146]. Here, similar to the Smith-Waterman approach, the
goal is to find an alignment with maximal score. However, in this case we require that
the alignment is a match (strictly monotonous alignment) without imposing any further
step size conditions. Therefore, opposed to a score-maximizing path, there are no cells
of negative score in a score-maximizing match. Thus, negative scores can be ignored
completely and we therefore use the rectified version S≥0, in which every negative entry in
S is replaced by zero (see Figure 4.1g). Again, a score-maximizing match can be computed
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efficiently using dynamic programming. To this end, we define a matrix U as

U(n,m) := max





U(n− 1,m),
U(n,m− 1),
U(n− 1,m− 1) + S≥0(n,m)

and U(0, 0) := U(n, 0) := U(0,m) := 0 for n ∈ {1, . . . , N} and m ∈ {1, . . . ,M}. Then a
score-maximizing matchM∗ can be computed using the following algorithm, see [116] for
further details.

Initialization: n := N , m := M ,M∗ := ∅
Procedure: while (n > 0) and (m > 0) do

if D(n,m) = D(n,m− 1) then
m := m− 1

elseif D(n,m) = D(n− 1,m) then
n := n− 1

elseM∗ :=M∗ ∪ {(n,m)}, n := n− 1, m := m− 1
returnM∗

Figure 4.1h shows an example of an optimal match computed via partial matching, based
on the matrix shown in Figure 4.1g. Here, the misalignment of the solo segments A(75, 83)
and M(99, 107) found in the Smith-Waterman case is not present. So partial matching, not
enforcing any step-size or continuity conditions on the alignment, yields a more flexible
alignment than the Smith-Waterman approach. However, in turn, this flexibility can also
lead to spurious, inappropriate and fragmented alignments, as can be seen in segments
A(101, 110) and M(127, 147), see marked region in Figure 4.1h.

4.6 Concluding Remarks

In summary, one may think of two extremes: on the one hand, DTW relies on strong
model assumptions, but works reliably in the case that these assumptions are fulfilled;
on the other hand, partial matching offers a high degree of flexibility, but may lead to
alignments being locally misguided or split into many fragments. The Smith-Waterman
approach lies in between these two extremes.

Furthermore, alignment problems as discussed in this chapter are closely related to tasks
such as automated accompaniment [25, 153] and score following [19, 20, 29, 36]. However,
alignment strategies often employed in these fields such as hidden Markov models (HMMs)
[138] and other graphical models [20,154] are not further considered in the following. Such
probabilistic methods usually require training data consisting of several different versions
of the underlying audio material to identify statistical properties of the sound. Because
only one audio version is assumed to be available in the following, such methods have
not been incorporated. Further discussion about the use of graphical models in alignment
scenarios can be found in [84, 138,154].



Chapter 5

Late-Fusion-Based Partial

Synchronization

Even though recent music synchronization approaches can handle significant variations
in tempo, dynamics, and instrumentation, most of them rely on the assumption that the
two versions to be aligned correspond to each other with respect to their global structure.
However, using real-world data, these idealized conditions are often not met. For exam-
ple, in popular music one often encounters structurally different album and radio edits as
well as extended versions and remixes. Live or cover versions may contain improvisations,
additional solos, and other deviations from the original song [164]. Poor recording condi-
tions, interfering screams and applause, or distorted instruments may introduce additional
serious degradations in the audio recordings. On the other side, MIDI and other symbolic
descriptions often convey only a simplistic view of a musical work, where, e. g., certain
voices or drum patterns are missing. Furthermore, symbolic data as obtained from optical
music recognition is often corrupted by recognition errors.

In this chapter, we address the problem of reliable partial music synchronization with the
goal to automatically identify those passages within the given music representations that
allow for a reliable alignment. Given two different representations of the same piece, the
idea is to use several types of conceptually different synchronization strategies to obtain
an entire family of temporal alignments. Now, consistencies over the various alignments
indicate a high reliability in the encoded correspondences, whereas inconsistencies reveal
problematic passages in the music representations to be aligned. Based on this automated
local classification of the synchronization results, we segment the music representations
into passages, which are then further classified as reliable and critical. Here, the reliable
passages have a high confidence of being correctly aligned with a counterpart, whereas
the critical passages are likely to contain variations and artifacts. The reliable passages
can then be used as anchors for subsequent improvements and refinements of the overall
synchronization result. Conversely, this automated validation is also useful in revealing
the critical passages, which often contain the semantically interesting and surprising parts
of a representation.

The remainder of this chapter is organized as follows. In Section 5.1, we describe the
proposed method. Then, we introduce in Section 5.2 a suitable quality measure, which
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is employed in Section 5.3 to investigate the role of the parameters used in the overall
procedure. After that, we demonstrate the practical applicability of the proposed tech-
nique in Section 5.4. Here, we formulate the idea of a cross-version analysis for comparing
and/or combining analysis results from different representations. As an example, we ap-
ply this idea in the context of harmonic analysis. In particular, we automatically evaluate
MIDI-based chord labeling procedures using annotations given for corresponding audio
recordings.

5.1 Consistency Alignment

As illustrated by the examples given in Chapter 4, alignments computed using previous
methods may contain satisfying as well as misguided parts. Therefore, with no definite
a-priori knowledge about the input data, none of the alignment methods presented in
Chapter 4 can in general guarantee a reliable and musically meaningful alignment. How-
ever, if several strategies with different design goals yield locally similar alignment results,
then there is a high probability that these results are musically meaningful. Based on this
simple idea, we present now a novel late-fusion approach that combines several alignment
procedures in order to identify passages that can be reliably synchronized. To allow for
a direct comparison to the alignment methods described in Chapter 4, we consider here
again the case of MIDI-audio synchronization and discuss the proposed method using the
same running example, i.e., the song ‘And I love her’ by the Beatles. For other cases, such
as audio-audio synchronization, the proposed method can be applied in a similar fashion.

Given a MIDI-audio pair for a song, we start by computing an optimal global path using
DTW, a family of paths using recursive Smith-Waterman, and an optimal match using par-
tial matching as described in Chapter 4. Here, we choose Σ = Σ1 in the DTW alignment,
since this leads to more flexibility in cases where the assumption of global correspondence
between the sequences is violated. The Smith-Waterman procedure can better deal with
local deviations in the two sequences to be aligned. Therefore it does not require the
flexibility offered by Σ1 and we can choose the more robust Σ = Σ2. Partial matching
does not incorporate any step-size constraints. In a next step, we convert each alignment
into a binary matrix having the same size as the cost matrix C. Here, a cell in the matrix
is set to one if it is contained in the corresponding alignment, and zero otherwise (actually,
in Figure 4.1 the three alignments are already represented in this way). Next, we combine
the three alignments using a late-fusion strategy to compute a kind of soft intersection. To
this end, we augment the binary matrices by additionally setting every cell in the binary
matrices to one that is within a neighborhood of an alignment cell (see Figure 5.1a-c).
Without such a tolerance small differences between the individual alignments would lead
to empty intersections. In the following, we use a neighborhood corresponding to one
second. Here, experiments have shown that changing the neighborhood size within rea-
sonable limits does not have a significant impact on the final results. In a last step, we
derive an intersection matrix by setting each matrix cell to one that is one in all three
augmented binary matrices (see Figure 5.1d).

The intersection matrix can be thought of as a rough indicator for areas in the cost matrix
where the three alignment strategies agree. However, this matrix does not encode an
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Figure 5.1. Steps in the proposed method continuing the example shown in Figure 4.1. (a)-(c)
Alignment (black) and corresponding augmented binary matrix (red and white) for the optimal
global path (DTW), family of paths (Smith-Waterman) and the optimal match (partial match-
ing). (d) Intersection matrix derived from (a)-(c). (e) Weighted intersection matrix. (f) Consis-
tency alignment C.

alignment that is constrained by any of the conditions described in Section 4.2. Therefore,
to derive a final alignment result from this matrix, we first weight the remaining cells in
the intersection matrix according to how often they are contained in one of the original
three alignments (Figure 5.1e). Then, interpreting the weighted matrix as a score matrix,
we use partial matching to compute an optimal match, C, referred to as the consistency
alignment (Figure 5.1f).

In the following, we call a segment in the audio recording (in the MIDI version) reliable
if it is aligned via C to a segment in the MIDI version (in the audio recording). Similarly,
we call a segment critical if it is not aligned. Here, A(3, 39), A(39, 76) and A(83, 95)
as well as M(8, 45), M(63, 99) and M(106, 117) are examples of reliable segments in the
audio recording and in the MIDI version, respectively, see Figure 5.1f. However, the auto-
matic detection of critical sections can also be very useful, as they often contain musically
interesting deviations between two versions. For example, consider the critical segment
M(45, 63). As discussed in Chapter 4, this segment contains the bridge found in the
MIDI that was omitted in the audio recording. Here, the proposed method automatically
revealed the inconsistencies between the MIDI version and the audio recording. The dif-
ferences between the audio and the MIDI version in the intro, outro and solo segments
have also been detected. Here, using multiple alignment strategies leads to a more ro-
bust detection of critical segments than using just a single approach. The reasons why a
segment is classified as critical can be manifold and constitute an interesting subject for
a subsequent musical analysis, which would be beyond the scope of this thesis. In this
context, however, this novel approach provides support for such an analysis.
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5.2 Evaluation Setup

To systematically evaluate the performance of the proposed procedure, we use 60 pieces
from the classical and 60 pieces from the popular music collection of the RWC music
database [66]. For each piece, RWC supplies high-quality MIDI-audio pairs that globally
correspond to each other. To obtain a ground-truth alignment for each MIDI-audio pair
we employ a high-resolution global synchronization approach (described in more detail in
Chapter 7) and manually check the results for errors.

To simulate typical musical and structural differences between the two versions, we severely
distort and modify the MIDI versions as follows. Firstly, we temporally distort each MIDI
file by locally speeding up or slowing down the MIDI up to a random amount between
±50%. In particular, we change the tempo continuously within segments of 20 seconds
of length, and add abrupt changes at segment boundaries to simulate musical tempo
changes (ritardandi, accelerandi, fermata). Secondly, we structurally modify each MIDI
file by replacing several MIDI segments (each having a length of 30 to 40 seconds) by
concatenations of short 2 second snippets taken from random positions within the same
MIDI file. In doing so, the length of each segment remains the same. These modified
segments do not correspond to any segment in the audio anymore. However, because
they are taken from the same piece, the snippets are likely to be harmonically related to
the replaced content. Here, the idea is to simulate a kind of improvisation that fits into
the harmonic context of the piece, but that is understood as musically different between
the audio and the MIDI version (similar to the differences in A(75, 83) and M(99, 107),
discussed in Chapter 4). Finally, we employ the ground-truth alignment between the
original MIDI and the audio. Keeping track of the MIDI modifications, we derive a ground-
truth alignment between the modified MIDI and the audio, in the following referred to as
A∗. To present even more challenges to the alignment approaches, we employ a second
dataset with more strongly modified MIDI versions. Here, we not only distort and replace
randomly chosen MIDI segments as described above, but insert additional MIDI snippet
segments. These additional structural modifications make the synchronization task even
harder.

For a given modified MIDI-audio pair, let A denote an alignment obtained using one
of the synchronization strategies described above. To compare A with the ground-truth
alignment A∗, we introduce a quality measure that is based on precision and recall values,
while allowing some deviation controlled by a given tolerance parameter ε > 0. The
precision of A with respect to A∗ is defined by

P(A) =
|{γ ∈ A | ∃γ∗ ∈ A∗ : ||γ − γ∗||2 ≤ ε}|

|A|

and the recall of A with respect to A∗ is defined by

R(A) =
|{γ∗ ∈ A∗ | ∃γ ∈ A : ||γ − γ∗||2 ≤ ε}|

|A∗|
.

Here, ||γ−γ∗||2 denotes the Euclidean norm between the elements γ, γ∗ ∈ [1 : N ]×[1 : M ].
In the experiments, a tolerance parameter ε corresponding to one second was used. Finally,
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Figure 5.2. Effect of the smoothing parameter λ on the alignment accuracy of the DTW, rSW,
PM, and CA procedures leaving the remaining parameters fixed (τ = 0.2, γ = 1). Horizontal axis:
λ. Vertical axis: Precision (bold black), F-measure (red), Recall (dashed blue). (a) Results using
modified MIDI-audio pairs. (b) Results using strongly modified MIDI-audio pairs.

the F-measure is defined by

F(A) :=
2P(A)R(A)

P(A) + R(A)
.

5.3 Experiments

In a first experiment, we investigate the influence of the smoothing parameter λ on the per-
formance of dynamic time warping (DTW), the recursive variant of the Smith-Waterman
approach (rSW), partial matching (PM), and the proposed consistency alignment (CA).
The parameter specifies the number of consecutive features taken into account for the
smoothing. On the one hand, increasing λ emphasizes the structural properties of a cost
matrix as discussed in Section 4.1 and is often a requirement to yield an overall robust syn-
chronization result. On the other hand, smoothing can lead to a gradual loss of temporal
accuracy in the alignment.

Figure 5.2 shows the average precision (bold black), recall (dashed blue), and F-measure
(red) for all four alignment procedures using increasing values for λ in combination with
fixed values for the other parameters (τ = 0.2, γ = 1). Here, we used the modified
MIDI-audio pairs in Figure 5.2a and the strongly modified pairs in Figure 5.2b. For
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Figure 5.3. Effect of the threshold parameter τ on the alignment accuracy of the DTW, rSW,
PM, and CA procedures leaving the remaining parameters fixed (λ = 12, γ = 1). Horizontal axis:
τ . Vertical axis: Precision (bold black), F-measure (red), Recall (dashed blue). (a) Results using
modified MIDI-audio pairs. (b) Results using strongly modified MIDI-audio pairs.

computational reasons, we computed the average only over a subset of ten classical and ten
pop pieces from the original dataset. Here, looking at the results for DTW, rSW, and PM
reveals that increasing λ leads to a higher precision. This indicates an enhanced robustness
for all three procedures. However, if the smoothing is applied strongly the average recall
slightly drops indicating the gradual loss of temporal accuracy. Furthermore, the DTW
procedure only yields a rather low average precision for the strongly modified MIDI-audio
pairs. Here, the reason is the boundary condition forcing DTW to align both versions as
a whole, even if there are locally no musically meaningful correspondences. Still, DTW
offers a very high recall value meaning that the correct alignment is often a true subset
of the DTW alignment. This property is exploited by the consistency alignment which is
often able to extract the correct parts of the DTW alignment thus yielding a very high
overall precision. Looking at the CA results reveals that the proposed procedure yields
a high precision with competitive F-measure and recall values for λ ∈ [9 : 15]. In the
following, we set λ = 12 which corresponds to 6 seconds using a feature rate of 2 Hz.

In a second experiment, we analyze the role of the threshold parameter τ . This parameter
controls which cells in the cost matrix C become positive score entries in the matrices S
and S≥0, see Section 4.4. Figure 5.3 shows the results for varying τ while fixing the other
parameters (λ = 12, γ = 1). Apart from that, the same experimental setup is used as in
the previous experiment. Note, that the DTW procedure does not dependent on τ thus
its results are constant in Figure 5.3. As the experiment shows, using very small values for
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Figure 5.4. Effect of the parameter γ on the alignment accuracy of the DTW, rSW, PM, and CA
procedures leaving the remaining parameters fixed (λ=12, τ=0.2). Horizontal axis: γ. Vertical axis:
Precision (bold black), F-measure (red), Recall (dashed blue). (a) modified data. (b) strongly
modified data. The DTW and PM procedures are not affected by this parameter.

τ , only very similar feature sequences are aligned and both the rSW and PM procedures
are able to produce alignments with a high precision. However, this is only possible at
the cost of having a very low recall as many correct alignment paths are missed. The
break-even point for both procedures is near 0.2. For this value, the proposed consistency
alignment yields a recall similar to rSW and PM but the precision is significantly higher.
Overall, since the increase in F-measure is noticeable for all procedures up until 0.2 and
diminishes beyond, we use τ = 0.2 in the following. This value was also found to deliver
reasonable results in the context of audio matching [128].

In a third experiment, we inspect the influence of the gap-penalty parameter γ. This
parameter controls the fragmentation level of the alignment resulting from rSW. Here,
we found that the influence of this parameter is less significant compared to the other
parameters. Still, the experiment indicated that using some penalty for the gaps is needed
for rSW to yield a robust alignment in our scenario, see Figure 5.4. Here, choosing γ
between 0.5 and 2 yielded very similar results. In the following, we set γ = 1.

In general, the consistency alignment could be computed using an arbitrary combination
of alignment procedures. In a fourth experiment, we investigate the alignment accuracy
for all possible combinations of the DTW, rSW, and PM procedures (Figure 5.5). All free
parameters are fixed for the experiment (λ = 12, τ = 0.2, γ = 1). A first interesting obser-
vation is that all three individual procedures (Figure 5.5a-c) only yield a rather low average
precision thus none of them can guarantee a meaningful alignment on its own. Combining
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Figure 5.5. Effect of using different combinations of alignment procedures to compute the
consistency alignment on the alignment accuracy. The parameter settings are fixed (λ = 12,
τ = 0.2, γ = 1). Vertical axis: Precision (bold black), F-measure (red), Recall (dashed blue).
Horizontal axis: (a) DTW. (b) rSW. (c) PM. (d) rSW/PM. (e) DTW/PM. (f) DTW/rSW. (g)
DTW/rSW/PM. Left: Results using modified MIDI-audio pairs. Right: Results using strongly
modified MIDI-audio pairs.

P R F
DTW 0.68 0.99 0.81
rSW 0.84 0.90 0.87
PM 0.86 0.93 0.89
CA 0.91 0.90 0.90

P R F
DTW 0.52 0.96 0.68
rSW 0.81 0.89 0.85
PM 0.83 0.93 0.87
CA 0.90 0.87 0.88

P R F
DTW 0.66 0.96 0.78
rSW 0.66 0.65 0.64
PM 0.70 0.71 0.70
CA 0.89 0.64 0.69

P R F
DTW 0.47 0.87 0.61
rSW 0.62 0.63 0.61
PM 0.66 0.70 0.67
CA 0.89 0.58 0.65

(a) Classical Music
modified

(b) Classical Music
strongly modified

(c) Popular Music
modified

(d) Popular Music
strongly modified

Table 5.1. Average precision (P), recall (R) and F-measure (F) for the DTW, rSW, PM, and CA
procedures using four different datasets with fixed parameters settings (λ=12, τ=0.2, and γ=1).

any two of the procedures results in a noticeable gain in precision (Figure 5.5d-f). In
particular, including DTW is important for a high precision, see Figure 5.5e-f. Finally,
the proposed combination of all three methods yields the highest precision (Figure 5.5g).
As expected, the recall is slightly lower here, but is still on a competitive level.

In a final experiment, we determine the results for each alignment procedure separately
for each available dataset. In Table 5.1, we consider the full classical and popular music
datasets (120 recordings in total) using modified and strongly modified MIDI-audio pairs.
Here, comparing the results for the modified and the strongly modified MIDI-audio pairs
reveals that all procedures are able to cope quite well with the additional structural dif-
ferences used in the strongly modified pairs. For example, the precision / recall for rSW
slightly decrease from 0.84/0.9 (Table 5.1a) to 0.81/0.89 (Table 5.1b), respectively. Only
DTW, again being forced to align the versions as a whole, shows a significant drop in pre-
cision. Furthermore, comparing the results for the classical and the popular music dataset
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Figure 5.6. Cross-version music analysis based on synchronization techniques.

shows much lower values for the latter. Here, the underlying reason is that popular music
tends to be highly repetitive. Combined with structural differences, this often leads to a
higher confusion in the alignment. This is also reflected in Table 5.1 where most preci-
sion and recall values are significantly lower for the popular music dataset. For example,
precision / recall for rSW decrease from 0.84/0.9 (Table 5.1a) to 0.66/0.65 (Table 5.1c),
respectively. On the contrary, this is not the case for the consistency alignment which
achieves a high precision of 0.89 also for the popular music dataset. Again, the recall is
still on a competitive level.

In summary, as the experiments illustrate, the consistency alignment is able to deliver
alignments with a high precision in combination with a competitive recall. Furthermore,
the proposed late-fusion procedure is less dependent on the employed parameter settings
or on the given dataset compared to the other individual alignment procedures. In the
next section, we demonstrate the applicability of the proposed method in the context of
harmonic analysis.

5.4 Application: Cross Version Harmonic Analysis

A musical work can be described in various ways using different representations. Symbolic
formats (e. g., MusicXML, MIDI, Lilypond) conventionally describe a piece of music by
specifying important musical parameters like pitch, rhythm, and dynamics. Interpreting
these parameters as part of a musical performance leads to an acoustical representation
that can be described by audio formats encoding the physical properties of sound (e. g.,
WAV, MP3). Depending on the type of representation, some musical properties are directly
accessible while others may be implicit or even absent. For example, extracting pitch
information from a MIDI file is straightforward, while extracting the same information
from an audio file is a nontrivial task. On the other hand, while timbre and other complex
musical properties are richly represented in an audio recording, the corresponding options
in a MIDI file are very limited. Such differences between music representations allow for
conceptually very different approaches to higher-level music analysis tasks such as melody
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extraction or structure analysis. Typically, each approach has intrinsic domain-specific
strengths and weaknesses.

The main conceptual contribution of this section is the idea of a cross-version analysis for
comparing and/or combining analysis results from different domains. The main idea is
to employ the music synchronization techniques developed in this chapter to temporally
align music representations across the different domains (see Figure 5.6). In general, a
cross-version approach presents many varied opportunities to compare methods across
different domains or to create methods that unite the domain-specific strengths while
attenuating the weaknesses. This section presents an instance of such a cross-version
analysis procedure, considering the task of automated chord labeling. Here, the objective
is to induce the harmonic structure of a piece of music. The output of a chord labeling
process is a sequence of chord labels with time stamps, either in musical time (i. e., in
bars and beats) or in physical time measured in seconds. Because chord progressions
describe the structure of a piece in a very musical and compact way, they often form the
basis of musicological analyses and further automatic music processing applications. In
particular, we demonstrate the cross-version approach by evaluating two state-of-the-art
MIDI-based chord labelers using a ground truth originally created for audio recordings.
Using the synchronization techniques, we can compare chord labels obtained from different
procedures (automated or manual) and from different music representations (MIDI or
audio). Having a unified view of the analysis results not only allows for an automated
evaluation of the various analysis procedures but also deepens the understanding of the
algorithms’ behavior and the properties of the underlying music material. In the following,
a brief overview of available chord labeling methods is given including a short description
of two state-of-the-art symbolic domain methods. Then, we discuss the evaluation of these
two methods while demonstrating how a cross-version visualization greatly deepens the
understanding of the analysis results.

5.4.1 Automatic Chord Labeling

In the literature, most chord labeling procedures focus on chord labeling from audio data.
Many of these procedures follow a two-step approach. In a first stage, chroma features
(see Section 2) are extracted from an audio file in a frame-wise fashion. Then, a statistical
model is applied to the sequence of chroma vectors that optimizes the match between
specific chord templates and local sections of the chromagram. Typical statistical models
applied as part of this second stage are hidden Markov models [99, 168] or more general
graphical models [110]. Additional modeling constraints or auxiliary information can
further improve chord labeling accuracy. These include the prior identification of the
fundamental frequency or root note of each chord before the chromagram is estimated [159],
information about the metrical structure [141], information about the musical structure
[107], or the musical context [110]. Current state of the art chord labeling programs from
audio have reached an identification accuracy of up to 80% as measured by the time overlap
between predicted and ground truth chord labels, see [113].

Several procedures have been proposed that make use of symbolic music data. Early
models such as those by [192] and [112] were designed to perform music-theoretic harmonic
analyses (roman numeral analyses) from symbolic music input. Identifying chords in



5.4. APPLICATION: CROSS VERSION HARMONIC ANALYSIS 61

harmonic context (key) was one component within these music-analytic procedures. Both
Winograd’s and Maxwell’s procedures are rule-based and rely heavily on knowledge of
Western music theory, designed for the use with Western art music. [176] proposed key
identification, chord labeling, and harmonic analysis procedures from a similar perspective.
These procedures were implemented by Sleator and Temperley as part of the Melisma
Music Analyzer [170]. In [155], the authors presented a hidden Markov model that uses
symbolic MIDI data as input and produces a harmonic analysis of a musical piece including
key and roman numerals labeling. [162] describes a chord labeling system for MIDI guitar
sequences that is based on the symbolic chord labeler proposed by [142]. However, to be
applicable in a jazz or latin music context the chord labeling system in [162] is specifically
designed for the recognition of more complex chords. Their procedure is based on a
hybrid mixture of pattern-matching techniques, harmonic context rules, and rules based
on stylistic knowledge, and the resulting system is thus somewhat specific to their chosen
task.

Even in this very short literature summary, a trend becomes apparent, moving away
from rule-based and style-specific chord labeling systems that use explicit, built-in expert
knowledge, towards data-driven and statistical reasoning approaches that learn and adapt
to musical data from arbitrary styles. In the following, we evaluate two current chord-
labeling systems based on Bayesian statistical frameworks, which have proven to be very
successful in many areas of computational music processing. The Melisma system [176]
employs a combination of preference rules (pitch spelling and chord root identification,
see [100]) and Bayesian methods (chord and key estimation, see [177]). The system can
produce chord labels as well as a roman numeral analysis, an analysis describing the
relation between a chord and the key of the segment the chord is part of. For the evaluation
below we use the information about chord root, mode (major, minor, unspecified) and fifth
(perfect, diminished, unspecified) as well as the onset and offset times. This leads to three
possible chord classes, namely major, minor, and diminished.

In contrast to Melisma, the second approach evaluated in the following employs Bayesian
techniques for all parts of the underlying harmony model [158]. After incorporating all
relevant musical parameters into a single model, a Bayesian model selection strategy is
employed to choose the most likely chord. Overall, six different chord classes are considered
by this approach, namely major, minor, diminished, augmented, sus2, and sus4. We refer
to this approach in the following as RLM .

5.4.2 Evaluation

Exploiting the availability of multiple versions of a given piece of music, we have suggested
the general concept of a cross-version analysis for comparing and/or combining analysis
results across the versions. We now exemplarily apply this concept in the context of
harmony analysis. In particular, we automatically evaluate the two MIDI-based chord
labelers RLM and Melisma from Section 5.4.1, whose performance has not been clear so
far, since no ground truth labels have been available on a larger scale.
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Experimental Setup

In the following evaluation we exploit the audio data chord annotations provided by
Christopher Harte, who manually annotated all 180 songs of the 12 Beatles studio al-
bums [71]. Harte’s annotations are generally accepted as the de-facto standard for evaluat-
ing audio-based chord labeling methods. Transferring these annotations from the acoustic
to the symbolic domain allows for an efficient reuse of the existing ground truth for the
evaluations of symbolic chord labelers. Furthermore, having a common set of ground truth
across all available musical domains presents a starting point to identify exactly those po-
sitions in a piece where a method relying on one music representation has the advantage
over another method, and to investigate the underlying musical reasons.

The evaluation dataset consists of 112 songs out of the 180 songs. For these 112 songs not
only an audio recording with annotated chord labels is available, but also a corresponding
MIDI version. Given a MIDI file and a corresponding audio recording, we start our
evaluation by computing a MIDI-audio alignment. Because the MIDI versions often differ
significantly, at local level, from the audio recordings, we cannot simply employ global
synchronization techniques. Therefore, we employ the proposed consistency alignment,
as described in Section 5.1, which identifies those sections that can be aligned reliably.
Using the linking information provided by the alignment, we compute for each MIDI beat
the corresponding position in the audio version. Using this linking information, we then
transfer the audio-based chord labels to the MIDI version. If more than one audio chord
label exists in the audio segment associated with a MIDI beat, we simply choose the
predominant chord label as MIDI annotation. As the result, we obtain a beat-wise chord
label annotation for the MIDI version.

For our evaluation, we compare the transferred ground truth annotations to the automati-
cally generated chord labels obtained from Melisma and RLM on the basis of the 12 major
and the 12 minor chords. Therefore, using the interval comparison of the triad as used for
MIREX 2010 [113], all ground truth chord labels are mapped to one of these 24 chords.
Here, both a seventh chord and a major seventh chord are mapped to the corresponding
major chord. However, augmented, diminished or other more complex chords cannot be
reduced to either major or minor and therefore are omitted from the evaluation.

Visualization

Using synchronization techniques allows for visualizing different chord recognition results
simultaneously for multiple versions. Such cross-version visualizations turn out to be a
powerful tool for not only analyzing the chord label results but also for better understand-
ing the underlying music material [92]. We introduce this visualization concept by means
of a concrete example shown in Figure 5.7. Here, the chord labels generated by Melisma
and RLM are visualized along with the transferred ground truth annotations using a com-
mon MIDI time axis given in beats (horizontal axis). The vertical axis represents the 24
major and minor chords, starting with the 12 major chords and continuing with the 12
minor chords. Associated with each beat is a black entry representing the ground truth
chord label that we transferred to the MIDI files. For example, in Figure 5.7, a G major
chord label is assigned to beat 50. The colored entries in the figure are used to indicate
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Figure 5.7. Cross-version chord evaluation for the song Getting Better. Left: Overlay of two
MIDI-based chord labeling results (Melisma and RLM ) and manually generated audio-based chord
labels. Right: Consistency alignment (horizontal axis specifies MIDI time in beats and vertical
axis specifies audio time in seconds).

where the two automatic chord labelers differ from the manual annotation. Here, yellow
and green entries indicate that RLM and Melisma differ from the manual annotation, re-
spectively. For example, in the beginning of the song the green entries show that Melisma
detected a C major chord, while the ground truth specified an F major chord. If a chord
labeler generated a chord label that cannot be reduced to either major or minor, then
this is indicated by a colored entry in the ‘xx’ row. For example, in the beginning of
the song RLM detected a complex chord corresponding to a yellow entry in the ‘xx’ row.
Sometimes, both automatic chord labelers differ from the ground truth, but agree on the
same chord label. Such consistent deviations from the ground truth are marked in red.
An example can be found around beat 200, where both automatic chord labelers specify
a C major chord instead of an F major chord in the ground truth. Furthermore, areas
in the figure with a gray background indicate beats for that no ground truth is available.
For example, in Figure 5.7, this can be observed between beat 210 and 230. Here, our
consistency alignment, given on the right in the figure, shows that this section in the MIDI
file could not be reliably aligned to a corresponding section in the audio. Furthermore, a
ground truth annotation might also be unavailable for a beat if the chord label at that
position is irreducible to major or minor—for example, if the chord label specifies an
augmented chord.

Overall, our visualization allows for the identification of two different classes of inconsisten-
cies. On the one hand, red entries in the visualization reveal positions, where the two chord
labelers consistently differ from the ground truth. Here, the reason for the error may be of
extrinsic or musical nature, independent of the specific chord labeler. On the other hand,
yellow and green entries indicate intrinsic errors of the respective chord labeler. Thus, our
visualization constitutes a useful tool to identify interesting or problematic passages in the
audio recording.

Quantitative Evaluation

We now quantitatively evaluate the two MIDI-based chord labelers. Table 5.2 presents the
results for all 112 pieces in our database. For each song, the precision values of Melisma
and RLM are listed. Here, precision indicates the percentage of the manually annotated
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Prec Prec
Piece AC RLM Melisma

AcrossTheUniverse 72 82 79
ADayInTheLife 90 79 83
AHardDaysNight 99 90 76
AllIveGotToDo 96 96 93
AllMyLoving 97 90 61
AllYouNeedIsLove 84 88 85
AndILoveHer 83 77 75
AndYourBirdCanSing 98 80 73
AnnaGoToHim 91 86 78
AnotherGirl 97 98 60
AnyTimeAtAll 75 94 91
BabyItsYou 84 99 93
BabysInBlack 93 94 92
BabyYoureARichMan 76 85 74
BackInTheUSSR 97 85 44
Because 81 84 83
BeingForTheBenefitOfMrKit 92 81 75
Birthday 99 74 65
BlueJayWay 26 100 100
Boys 51 79 19
CantBuyMeLove 94 73 82
ComeTogether 0 – –
DearPrudence 92 70 64
DigaPony 99 62 33
DoctorRobert 99 76 60
DontPassMeBy 95 96 96
DoYouWantToKnowASecret 70 94 72
DriveMyCar 75 83 65
EightDaysAWeek 99 92 74
EleanorRigby 98 72 78
EverybodysGotSomethingToH 85 69 60
EverybodysTryingToBeMyBab 95 71 85
FixingAHole 84 69 82
ForNoOne 90 87 80
GetBack 42 58 64
GettingBetter 83 60 52
Girl 83 92 92
GoodDaySunshine 82 85 55
GotToGetYouIntoMyLife 21 53 56
HelloGoodbye 65 84 78
Help 99 90 73
HelterSkelter 0 – –
HereComesTheSun 96 95 80
HereThereAndEverywhere 91 85 82
HoneyDont 98 93 76
HoneyPie 93 80 42
IAmTheWalrus 95 81 55
IDontWantToSpoilTheParty 99 94 84
IfIFell 96 100 57
IllBeBack 86 72 70
IllCryInstead 99 85 89
IllFollowTheSun 98 77 84
ImALoser 0 – –
ImHappyJustToDanceWithYou 0 – –
INeedYou 97 99 91
InMyLife 97 90 75

Prec Prec
Piece AC RLM Melisma

ISawHerStandingThere 98 83 87
IShouldHaveKnownBetter 98 77 69
ItsOnlyLove 21 96 83
ItWontBeLong 93 95 69
IWannaBeYourMan 91 61 42
IWantYou 89 61 52
LetItBe 89 96 89
LovelyRita 90 90 80
LoveMeDo 42 56 65
LucyInTheSkyWithDiamonds 70 63 71
MagicalMysteryTour 87 88 65
MaxwellsSilverHammer 99 89 76
Michelle 91 69 67
Money 56 38 11
MotherNaturesSon 97 83 82
NoReply 80 77 81
NorwegianWoodThisBirdHasF 96 17 79
NowhereMan 83 94 90
ObLaDiObLaDa 98 100 88
OhDarling 95 19 76
PennyLane 98 93 77
PleasePleaseMe 92 90 74
PSILoveYou 91 91 92
Revolution1 79 80 53
RockAndRollMusic 98 91 66
RollOverBeethoven 72 85 72
RunForYourLife 72 98 84
SavoyTruffle 92 87 37
SgtPeppersLonelyHeartsClu 44 80 60
ShesLeavingHome 98 69 61
Something 89 82 81
StrawberryFieldsForever 0 – –
Taxman 100 67 81
TellMeWhatYouSee 99 82 81
TheContinuingStoryOfBunga 90 97 87
TheEnd 96 74 40
TheFoolOnTheHill 77 92 60
TheLongAndWindingRoad 98 75 68
TheNightBefore 98 97 81
TheresAPlace 65 87 81
ThingsWeSaidToday 99 61 69
TicketToRide 90 76 90
TwistAndShout 86 96 82
WhatGoesOn 99 97 14
WhenIGetHome 57 97 79
WhenImSixtyFour 97 89 81
WhileMyGuitarGentlyWeeps 91 82 76
WhyDontWeDoItInTheRoad 100 97 90
WithALittleHelpFromMyFrie 99 91 79
YellowSubmarine 97 90 83
Yesterday 97 83 70
YouCantDoThat 75 59 59
YouNeverGiveMeYourMoney 78 92 74
YourMotherShouldKnow 77 88 82
YouveGotToHideYourLoveAwa 97 96 96
YouWontSeeMe 78 89 39

Average over all 112 songs 86 82 72

Table 5.2. Results of the cross-version chord evaluation for RLM and Melisma. The four columns
indicate the song title, the alignment coverage (AC), as well as the precision (Prec) for the two
methods.
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beats correctly classified by the respective chord labeler. Also, the alignment coverage
(AC), which specifies the percentage of the MIDI version that has been aligned to the
respective audio version, is listed.

As can be seen from Table 5.2, the precision of RLM , averaged over all 112 songs, is 82%,
whereas that of Melisma is only 72%. Using Bayesian model selection, RLM seems to
be more data adaptive and performs better in our experiments than Melisma, depending
on some hard-coded parameters. Furthermore, Melisma is tuned towards classical music,
whereas RLM focuses on popular music, which might be advantageous with regard to the
Beatles dataset.
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Chapter 6

Structure-Oriented Partial

Synchronization

In general, music synchronization is a challenging task as different versions of the same
piece of music may exhibit significant variations in terms of tempo, instrumentation, and
dynamics. However, as discussed in Chapter 4 and Chapter 5, structural differences have
been found to be particularly problematic for most state-of-the-art methods. To comple-
ment the generally applicable partial synchronization method described in Chapter 5, we
present in this chapter a new method, which focuses on structural variations between the
versions to be aligned.

A basic idea to deal with structural differences is to combine methods from music struc-
ture analysis and music alignment. In a first step, one may partition the two versions
to be aligned into musically meaningful segments. Here, one can use methods from auto-
mated structure analysis [27, 65, 127, 145, 157] to derive similarity clusters that represent
the repetitive structure of the two versions. In a second step, the two versions can then
be compared on the segment level with the objective to match musically corresponding
passages. Finally, each pair of matched segments can be synchronized using global align-
ment strategies such as DTW. In theory, this seems to be a straightforward approach. In
practice, however, one has to deal with several problems due to the variability of the under-
lying data. In particular, the automated extraction of the repetitive structure constitutes
a delicate task in case the repetitions reveal significant differences in tempo, dynamics, or
instrumentation. Furthermore, errors in the structural analysis may be aggravated in the
subsequent segment-based matching step leading to strongly corrupted synchronization
results.

The key idea of the method presented in this chapter is to perform a single, joint struc-
ture analysis for both versions to be aligned, which provides richer and more consistent
structural data than in the case of two separate analyses. The resulting similarity clus-
ters not only reveal the repetitions within and across the two versions, but also induce
musically meaningful partial alignments between the two versions. Section 6.1 describes
the proposed procedure for a joint structure analysis. Then, it is shown how the joint
structure can be used for deriving a musically meaningful partial alignment between two
audio recordings with structural differences, see Section 6.2. Furthermore, as described in

67
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Section 6.3, the proposed procedure can be applied for automatic annotation of a given
audio recording by partially available MIDI data.

6.1 Joint Structure Analysis

The problem of automated partial music synchronization has been introduced in [117],
where the idea is to use the concept of path-constrained similarity matrices to enforce
musically meaningful partial alignments. The approach presented here carries this idea
even further by using cluster-constraint similarity matrices, thus enforcing structurally
meaningful partial alignments.

The objective of a joint structure analysis is to extract the repetitive structure within and
across two different music representations referring to the same piece of music. Each of
the two versions can be an audio recording, a MIDI version, or a MusicXML file. The
basic idea of how to couple the structure analysis of two versions is very simple. First,
one converts both versions into common feature representations and concatenates the
resulting feature sequences to form a single long feature sequence. Then, one performs
a common structure analysis based on the long concatenated feature sequence. To make
this strategy work, however, one has to deal with various problems. First, note that
basically all available procedures for automated structure analysis have a computational
complexity that is at least quadratic in the input length. Therefore, efficiency issues
become crucial when considering a single concatenated feature sequence. Second, note
that two different versions of the same piece often reveal significant local and global tempo
differences. Recent approaches to structure analysis such as [65, 145, 157], however, are
built upon the constant tempo assumption and cannot be used for a joint structure analysis.
Allowing also tempo variations between repeating segments makes the structure analysis
problem a much harder problem [27, 127]. We now summarize the approach used in this
chapter closely following [127].

Given two music representations, we transform them into suitable feature sequences V :=
(v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ), respectively. To reduce different types of
music data (audio, MIDI, MusicXML) to the same type of representation, we again make
use of chroma-based audio features as discussed in Chapter 2. In the subsequent discussion,
we employ CENS features with a temporal resolution of 1 Hz. Next, we define the sequence
X of length K := N +M by concatenating the sequences V and W :

X := (x1, x2, . . . , xK) := (v1, . . . , vN , w1, . . . , wM ).

Fixing a suitable local similarity measure — here, we use the inner product — the (K×K)-
joint similarity matrix S is defined by S(i, j) := 〈xi, xj〉, i, j ∈ [1 : K]. Each tuple (i, j)
is called a cell of the matrix. Furthermore, recall from Chapter 4 that a path in this
matrix is a sequence p = (p1, . . . , pL) with pℓ = (iℓ, jℓ) ∈ [1 : K]2, ℓ ∈ [1 : L], satisfying
pℓ+1 − pℓ ∈ Σ, where Σ denotes a set of admissible step sizes. In the following, we use
Σ = Σ2 = {(1, 1), (1, 2), (2, 1)}.

As an illustrative example, we consider two different audio recordings of the Aria of the
Goldberg Variations BWV 988 by J.S. Bach, in the following referred to as Bach example.
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Figure 6.1. Joint structure analysis and partial synchronization for two structurally different
versions of the Aria of the Goldberg Variations BWV 988 by J.S. Bach. The first version is played
by G. Gould (musical form A1B1) and the second by M. Perahia (musical form A2

1
A2

2
B2

1
B2

2
). (a)

Joint similarity matrix S. (b) Enhanced matrix and extracted paths. (c) Similarity clusters.
(d) Segment-based score matrix M and match (black dots). (e) Matched segments. (f) Matrix
representation of matched segments. (g) Partial synchronization result.

The first version with a duration of 115 seconds is played by Glen Gould without repeti-
tions (corresponding to the musical form A1B1) and the second version with a duration of
241 seconds is played by Murray Perahia with repetitions (corresponding to the musical
form A2

1A
2
2B

2
1B

2
2). For the feature sequences hold N = 115, M = 241, and K = 356. The

resulting joint similarity matrix is shown in Figure 6.1a, where the boundaries between
the two versions are indicated by white horizontal and vertical lines.

In the next step, the path structure is extracted from the joint similarity matrix. Here,
the general principle is that each path of low cost running in a direction along the main
diagonal (gradient (1, 1)) corresponds to a pair of similar feature subsequences. Note that
relative tempo differences in similar segments are encoded by the gradient of the path
(which is then in a neighborhood of (1, 1)). To ease the path extraction step, we enhance the
path structure of S using the smoothing technique described in Section 4.1. The paths can
then be extracted by a robust and efficient greedy strategy as described in [116, Chapter
7], see Figure 6.1b. Here, because of the symmetry of S, one only has to consider the
upper left part of S. Furthermore, we prohibit paths to cross the boundaries between
the two versions. As a result, each extracted path encodes a pair of musically similar
segments, where each segment entirely belongs either to the first or to the second version.
To determine the global repetitive structure, the proposed procedure incorporates a one-



70 CHAPTER 6. STRUCTURE-ORIENTED PARTIAL SYNCHRONIZATION

 

 

0 100 200 300 400 500 600
0

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

5

10

15

 

 

10 20 30

5

10

15

20

25

30

0

20

40

60

80

100

 

 

0 100 200 300 400
0

50

100

150

200

250

0

100

200

300

400

500

 

 

0 100 200 300 400
0

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

(a) (b)

(c)

(d)

(e)

A

B

A B

A B

S
eg

m
en

ts
in

A

Segments in B

A

B

A

B

Figure 6.2. Joint structure analysis and partial synchronization for two structurally modified
versions of Beethoven’s Fifth Symphony Op. 67. The first version is a MIDI version and the second
one an audio recording by Bernstein. (a) Enhanced joint similarity matrix and extracted paths.
(b) Similarity clusters. (c) Segment-based score matrix M and match (indicated by black dots).
(d) Matrix representation of matched segments. (e) Partial synchronization result.

step transitivity clustering procedure, which balances out the inconsistencies introduced
by inaccurate and incorrect path extractions. For further details, see [116,127].

Altogether, we obtain a set of similarity clusters. Each similarity cluster in turn consists of
a set of pairwise similar segments encoding the repetitions of a segment within and across
the two versions. Figure 6.1c shows the resulting set of similarity clusters for our Bach
example. Both of the clusters consist of three segments, where the first cluster corresponds
to the three B-parts B1, B2

1 , and B2
2 and the second cluster to the three A-parts A1, A2

1,
and A2

2. The joint analysis has several advantages compared to two separate analyses.
First note that, since there are no repetitions in the first version, a separate structure
analysis for the first version would not have yielded any structural information. Second,
the similarity clusters of the joint structure analysis naturally induce musically meaningful
partial alignments between the two versions. For example, the first cluster shows that B1

may be aligned to B2
1 or to B2

2 . Finally, note that the delicate path extraction step often
results in inaccurate and fragmented paths. Because of the transitivity step, the joint
clustering procedure balances out these flaws and compensates for missing parts to some
extend by using joint information across the two versions.

On the downside, a joint structural analysis is computationally more expensive than two
separate analyses. Therefore, in the structure analysis step, the proposed procedure em-
ploys a relatively low feature resolution of 1 Hz. This resolution may then be increased
in the subsequent synchronization step (Section 6.2) and annotation application (Sec-
tion 6.3). The current MATLAB implementation can easily deal with an overall length
up to K = 3000 corresponding to more than forty minutes of music material. (In this
case, the overall computation time adds up to 10-400 seconds with the path extraction
step being the bottleneck, see [127]).

Another drawback of the joint analysis is that local inconsistencies across the two versions
may cause an over-fragmentation of the music material. This may result in a large num-
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ber of incomplete similarity clusters containing many short segments. As an example, we
consider a MIDI version as well as a Bernstein audio recording of the first movement of
Beethoven’s Fifth Symphony Op. 67, which were both structurally modified by removing
some sections. Figure 6.2a shows the enhanced joint similarity matrix and Figure 6.2b the
set of joint similarity clusters. Note that some of the resulting 16 clusters contain seman-
tically meaningless segments stemming from spuriously extracted path fragments. At this
point, one could try to improve the overall structure result by a suitable postprocessing
procedure. This itself constitutes a difficult research problem and is not in the scope of
this chapter. Instead, we introduce a procedure for partial music alignment, which has
some degree of robustness to inaccuracies and flaws in the previously extracted structural
data.

6.2 Partial Synchronization

In [117], an approach for partial music synchronization has been described. Here, the idea
is to first construct a path-constrained similarity matrix, which a priori constricts possible
alignment paths to a semantically meaningful choice of admissible cells. Then, in a second
step, a path-constrained alignment can be computed using standard matching procedures
based on dynamic programming.

We now carry this idea even further by using the segments of the joint similarity clusters
as constraining elements in the alignment step. To this end, we consider pairs of segments,
where the two segments lie within the same similarity cluster and belong to different
versions. More precisely, let C = {C1, . . . , CR} be the set of clusters obtained from the
joint structure analysis. Each similarity cluster Cr, r ∈ [1 : R], consists of a set of
segments (i. e., subsequences of the concatenated feature sequence X). Let α ∈ Cr be
such a segment. Then let L(α) denote the length of α and c(α) := r the cluster affiliation.
Recall that α either belongs to the first version (i. e., α is a subsequence of U) or to the
second version (i. e., α is a subsequence of V ). We now form two lists of segments. The
first list (α1, . . . , αI) consists of all those segments that are contained in some cluster of C
and belong to the first version. The second list (β1, . . . , βJ) is defined similarly, where the
segments now belong to the second version. Both lists are sorted according to the start
positions of the segments. (In case two segments have the same start position, we break
the tie by also considering the cluster affiliation.) We define a segment-based I × J-score
matrixM by

M(i, j) :=

{
L(αi) + L(βj) for c(αi) = c(βj),
0 otherwise,

i ∈ [1 : I], j ∈ [1 : J ]. In other words, M(i, j) is positive if and only if αi and βj belong
to the same similarity cluster. Furthermore, M(i, j) depends on the lengths of the two
segments. Here, the idea is to favor long segments in the synchronization step. For an
illustration, we consider the Bach example of Figure 6.1, where (α1, . . . , αI) = (A1, B1)
and (β1, . . . , βJ) = (A2

1, A
2
2, B

2
1 , B

2
2). The resulting matrixM is shown in Figure 6.1d. For

another more complex example, see Figure 6.2c.

Next, we compute a segment-based match using matrixM. Recall from Section 4.2 that
a match is a sequenceM = (π1, . . . , πL) with πℓ = (iℓ, jℓ) ∈ [1 : I]× [1 : J ] for ℓ ∈ [1 : L]
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satisfying 1 ≤ i1 < i2 < . . . < iL ≤ I and 1 ≤ j1 < j2 < . . . < jL ≤ J . Note that a match
with respect toM induces a partial assignment of segment pairs, where each segment is
assigned to at most one other segment. The score of a match M with respect to M is
then defined as

∑L
ℓ=1M(iℓ, jℓ). To compute a score-maximizing match, one can employ

the partial matching procedure discussed in Section 4.5. In the Bach example, the score-
maximizing match µ is given by µ = ((1, 1), (2, 3)). In other words, the segment α1 = A1

of the first version is assigned to segment β1 = A2
1 of the second version and α2 = B1 is

assigned to β3 = B2
1 .

In principle, the score-maximizing match µ constitutes our partial music synchronization
result. To make the procedure more robust to inaccuracies and to remove cluster redun-
dancies, we further clean the synchronization result in a post-processing step. To this end,
we convert the score-maximizing match µ into a sparse path-constrained similarity matrix
Spath of size N ×M , where N and M are the lengths of the two feature sequences V
and W , respectively. For each pair of matched segments, we compute an alignment path
using a global synchronization algorithm [47], which will be discussed in more detail in
Chapter 7. Each cell of such a path defines a non-zero entry of Spath, where the entry is set
to the length of the path (thus favoring long segments in the subsequent matching step).
All other entries of the matrix Spath are set to zero. Figure 6.1f and Figure 6.2d show
the resulting path-constrained similarity matrices for the Bach and Beethoven example,
respectively. Finally, we apply the procedure as described in [117] using Spath (which is
generally much sparser than the path-constrained similarity matrices as used in [117])to
obtain a purified synchronization result, see Figure 6.1g and Figure 6.2e.

To evaluate the proposed synchronization procedure, experiments similar to [117] were
conducted. In one experiment, synchronization pairs were formed consisting of two differ-
ent versions of the same piece. Each pair consists either of an audio recording and a MIDI
version or of two different audio recordings (interpreted by different musicians possibly
in different instrumentations). After manually labeling musically meaningful sections in
all versions, the pairs were modified by randomly removing or duplicating some of the
labeled sections, see Figure 6.3. The partial synchronization result computed by the pro-
posed algorithm was analyzed by means of its path components. A path component is
said to be correct if it aligns corresponding musical sections. Similarly, a match is said to
be correct if it covers (up to a certain tolerance) all semantically meaningful correspon-
dences between the two versions (this information is given by the ground truth) and if all
its path components are correct. The algorithm was tested on more than 387 different
synchronization pairs resulting in a total number of 1080 path components. As a result,
89% of all path components and 71% of all matches were correct (using a tolerance of 3
seconds).

The results obtained using the proposed segment-based synchronization approach are qual-
itatively similar to those reported in [117]. However, there is one crucial difference in the
two approaches. In [117], the authors use a combination of various ad-hoc criteria to
construct a path-constrained similarity matrix as basis for their partial synchronization.
In contrast, the proposed approach uses only the structural information in form of the
joint similarity clusters to derive the partial alignment. Furthermore, the availability of
structural information within and across the two versions allows for recovering missing
relations based on suitable transitivity considerations. Thus, each improvement of the



6.3. AUDIO ANNOTATION 73

0 100 200 300 400 500
0

100

200

300

400

0 100 200 300 400 500

D

C

B

A
S1 S2 S3 S4 S5 S6

P1 P2 P3

Audio [sec]

M
ID

I
[s
ec
]

(a)

0 50 100 150 200 250
0

50

100

150

0 50 100 150 200 250

D

C

B

A
S1 S2 S3 S4

P1 P2

Audio [sec]

M
ID

I
[s
ec
]

(b)

0 50 100 150 200 250
0

100

200

300

0 50 100 150 200 250

D

C

B

A
S1 S2 S3 S4 S5 S6 S7

P1 P2 P3

Audio [sec]

M
ID

I
[s
ec
]

(c)

0 50 100
0

20

40

60

80

0 50 100

D

C

B

A
S1 S2 S3 S4 S5 S6 S7

P1

Audio [sec]

M
ID

I
[s
ec
]

(d)

Figure 6.3. Partial synchronization results for various MIDI-audio synchronization pairs. The
top figures show the final path components of the partial alignments and the bottom figures indicate
the ground truth (Row A), the final annotations (Row B), and a classification into correct (Row D)
and incorrect annotations (Row C), see text for additional explanations. The pieces are specified
in Table 6.1. (a) Haydn (RWC C001), (b) Schubert (RWC C048, distorted), (c) Burke (P093),
(d) Beatles (“Help!”, distorted).

structure analysis will have a direct positive effect on the quality of the synchronization
result, see

6.3 Audio Annotation

The synchronization of an audio recording and a corresponding MIDI version can be
regarded as an automated annotation of the audio recording by means of the explicit
note events given by the MIDI file. Often, MIDI versions are used as a kind of score-
like symbolic representation of the underlying musical work, where redundant information
such as repetitions are not encoded explicitly. This is a further setting with practical
relevance where two versions to be aligned have a different repetitive structure (an audio
version with repetitions and a score-like MIDI version without repetitions). In this setting,
one can use the proposed segment-based partial synchronization to still obtain musically
adequate audio annotations.
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In the following, one of the experiments is summarized, which has been conducted on the
basis of synchronization pairs consisting of structurally equivalent audio and MIDI ver-
sions.1 In a first step, corresponding audio and MIDI versions were globally aligned using
the synchronization procedure described in Chapter 7. These alignments were taken as
ground truth for the audio annotation. Similar to the experiment in Section 6.2, musically
meaningful sections of the MIDI versions were manually labeled and some of these sections
were randomly removed or duplicated. Figure 6.3a illustrates this process by means of the
first movement of Haydn’s Symphony No. 94 (RWC C001). Row A of the bottom part
shows the original six labeled sections S1 to S6 (warped according to the audio version).
In the modification, S2 was removed (no line) and S4 was duplicated (thick line). Next,
the modified MIDI was partially aligned with the original audio recording as described
in Section 6.2. The resulting three path components of our Haydn example are shown
in the top part of Figure 6.3a. Here, the vertical axis corresponds to the MIDI version
and the horizontal axis to the audio version. Furthermore, Row B of the bottom part
shows the projections of the three path components onto the audio axis resulting in the
three segments P1, P2, and P3. These segments are aligned to segments in the MIDI thus
being annotated by the corresponding MIDI events. Next, these partial annotations were
compared with the ground truth annotations on the MIDI note event level. We say that
an alignment of a note event to a physical time position of the audio version is correct in
a weak (strong) sense, if there is a ground truth alignment of a note event of the same
pitch (and, in the strong case, additionally lies in the same musical context by checking
an entire neighborhood of MIDI notes) within a temporal tolerance of 100 ms. In our
Haydn example, the weakly correct partial annotations are indicated in Row D and the
incorrect annotations in Row C.

The other examples shown in Figure 6.3 give a representative impression of the overall an-
notation quality. Generally, the annotations are accurate—only at the segment boundaries
there are some larger deviations. This is due to the employed path extraction procedure,
which often results in “frayed” path endings. Here, one may improve the results by cor-
recting the musical segment boundaries in a postprocessing step based on cues such as
changes in timbre or dynamics. A more critical example (Beatles example) is shown in Fig-
ure 6.3d, where two sections (S2 and S7) are removed from the MIDI file and temporally
distorted the remaining parts. In this example, the MIDI and audio version also exhibit
significant differences on the feature level. As a result, an entire section (S1) has been left
unannotated leading to a relatively poor rate of 77% (74%) of correctly annotated note
events with respect to the weak (strong) criterion.

Finally, Table 6.1 shows further rates of correctly annotated note events for some represen-
tative examples. Additionally, the table also gives results for using significantly temporally
distorted MIDI files (locally up to ±20%). Note that most rates only slightly decrease
(e. g., for the Schubert piece, from 97% to 95% with respect to the weak criterion), which
indicates the robustness of the proposed annotation procedure to local tempo differences.
Further results as well as audio files of sonifications have been made available online2.

1Most of the audio and MIDI files were taken from the RWC music database [66]. Note that for the
classical pieces, the original RWC MIDI and RWC audio versions are not aligned.

2http://www-mmdb.iai.uni-bonn.de/projects/partialSync/

http://www-mmdb.iai.uni-bonn.de/projects/partialSync/
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Original Distorted
Composer Piece RWC

weak strong weak strong
Haydn Symph. No. 94, 1st Mov. C001 98 97 97 95
Beethoven Symph. Op. 67, 1st Mov. C003 99 98 95 91
Beethoven Sonata Op. 57, 1st Mov. C028 99 99 98 96
Chopin Etude Op. 10, No. 3 C031 93 93 93 92
Schubert Op. 89, No. 5 C048 97 96 95 95
Burke Sweet Dreams P093 88 79 74 63
Beatles Help! — 97 96 77 74

Average 96 94 91 87

Table 6.1. Examples for automated MIDI-audio annotation (most of files are from the RWC
music database [66]). The columns show the composer, the piece of music, the RWC identifier, as
well as the annotation rate (in %) with respect to the weak and strong criterion for the original
MIDI and some distorted MIDI.

Overall, in this chapter, we have introduced the strategy of performing a joint structural
analysis to detect the repetitive structure within and across different versions of the same
musical work. As a core component for realizing this concept, we have discussed a struc-
ture analysis procedure that can cope with relative tempo differences between repeating
segments. Furthermore, it was demonstrated how joint structural information can be used
to deal with structural variations in synchronization and annotation applications. One
main message of this chapter is that automated music structure analysis is closely related
to partial music alignment and annotation applications. Hence, improvements and exten-
sions of current structure analysis procedures to deal with various kinds of variations is of
fundamental importance for future research.
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Chapter 7

High Resolution Music

Synchronization

As we have seen throughout Part II of this thesis, automated music synchronization con-
stitutes a challenging research field since one has to account for a multitude of musical
aspects. For example, the music representations to be aligned might differ regarding the
data format, (e.g., score, MIDI, PCM), the genre, (e.g., pop music, classical music, jazz),
the instrumentation, (e.g., orchestra, piano, drums, voice), or in terms of the tempo, ar-
ticulation, dynamics, structure, polyphony, or ornamentation. In the last two chapters,
we introduced methods that robustly identify passages across various representations of a
piece of music that can be aligned in a meaningful way. As a last step, these approaches
aligned corresponding passages using classical global music synchronization methods. In
this chapter, we will concentrate further on this final alignment step.

In the design of global synchronization algorithms, one has to deal with a delicate trade-off
between robustness, temporal resolution, alignment quality, and computational complex-
ity. For example, global music synchronization strategies based on chroma features [28]
typically lead to robust alignment results with a reasonable synchronization quality. While
such alignments might be accurate enough for browsing and retrieval applications, they
are often too coarse to capture fine nuances in tempo and articulation as required in
performance analysis [190] or audio editing [28]. To obtain alignment results of higher
accuracy, other synchronization approaches propose the use of onset-based information for
certain classes of music [130,174], but suffer from a high computational complexity and a
lack of robustness. Dixon et al. [31] describe an online approach to audio synchronization.
Even though the proposed algorithm is very efficient, it cannot guarantee that the optimal
DTW alignment is actually computed. Müller et al. [131] present a more robust, but very
efficient offline approach, which is based on a multiscale strategy.

Focusing on the global synchronization scenario, we introduce in this chapter several strate-
gies on various conceptual levels to increase the time resolution and quality of the syn-
chronization result without sacrificing robustness and efficiency. First, we introduce a
new class of audio features that inherit the robustness from chroma-based features and
the temporal accuracy from onset-based features (Section 7.1). Then, in Section 7.2, we
show how these features can be used within an efficient and robust multiscale synchro-

77
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Figure 7.1. (a) First six measures of Burgmüller, Op. 100, Etude No. 2 (Burg2, see Table 7.1).
(b) Chroma representation of a corresponding audio recording. Here, the feature resolution is
50 Hz (20 ms per feature vector). (c) Normalized chroma representation.

nization framework. Finally, for further improving the alignment quality, we introduce
an interpolation technique that refines the given alignment path in some time consistent
way (Section 7.3). In Section 7.4, various experiments based on polyphonic Western music
are summarized, and we discuss the results indicating the respective improvements of the
proposed refinement strategies. Even though we focus on MIDI-audio and audio-audio
synchronization, similar techniques may be applied to other synchronization tasks as well.
We summarize our findings in Section 7.5 and conclude this part of the thesis with a
discussion of recently proposed global synchronization approaches in Section 7.6.

7.1 Robust and Accurate Audio Features

In this section, we introduce a new class of so-called DLNCO (decaying locally adaptive
normalized chroma-based onset) features that indicate note onsets along with their chroma
affiliation. These features possess a high temporal accuracy, yet being robust to variations
in timbre and dynamics. With chroma features being describes in Chapter 2, we start
with a summary of onset features. The novel DLNCO features are then described in
Section 7.1.2.

In the following, the first six measures of the Etude No. 2, Op. 100, by Friedrich Burgmüller
will serve us as our running example, see Figure 7.1a. For short, we will use the identifier
Burg2 to denote this piece, see Table 7.1. Figures 7.1b and 7.1c show a chroma representa-
tion and a normalized chroma representation, respectively, of an audio recording of Burg2.
Because of their invariance, chroma-based features are well-suited for music synchroniza-
tion leading to robust alignments even in the presence of significant variations between
different versions of a musical work, see [75, 131].
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Figure 7.2. Onset representation of Burg2. Each rectangle represents an onset feature specified
by pitch (here, indicated by the MIDI note numbers given by the vertical axis), by time position
(given in seconds by the horizontal axis), and by a color-coded value that correspond to the height
of the peak. Here, for the sake of visibility, a suitable logarithm of the value is shown.

7.1.1 Onset Features

We now describe a class of highly expressive audio features that indicate note onsets along
with their respective pitch affiliation. For details, see also [116, 130]. Note that for many
instruments such as the piano or the guitar, there is a sudden energy increase when playing
a note (attack phase). This energy increase may not be significant relative to the entire
signal’s energy, since the generated sound may be masked by the remaining components
of the signal. However, the energy increase relative to the spectral bands corresponding
to the fundamental pitch and harmonics of the respective note may still be substantial.
This observation motivates the following feature extraction procedure.

First the audio signal is decomposed into 88 subbands corresponding to the musical notes
A0 to C8 (MIDI pitches p = 21 to p = 108) of the equal-tempered scale. This can be
done by a high-quality multirate filter bank that properly separates adjacent notes as
discussed in Section 2.1. Then, 88 local energy curves are computed by convolving each of
the squared subbands with a suitable window function. Finally, for each energy curve the
first-order difference is calculated (discrete derivative) and half-wave rectified (positive part
of the function remains). The significant peaks of the resulting curves indicate positions
of significant energy increase in the respective pitch subband. An onset feature is specified
by the pitch of its subband and by the time position and height of the corresponding peak.

Figure 7.2 shows the resulting onset representation obtained for our running example
Burg2. Note that the set of onset features is sparse while providing information of very
high temporal accuracy. (The implementation used in this chapter has a maximal pitch
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dependent resolution of 2 − 10 ms.) On the downside, the extraction of onset features
is a delicate problem involving fragile operations such as differentiation and peak picking.
Furthermore, the feature extraction only makes sense for music with clear onsets (e. g.,
piano music) and may yield no or faulty results for other music (e. g., soft violin music).

7.1.2 DLNCO Features

We now introduce a new class of features that combine the robustness of chroma features
and the accuracy of onset features. The basic idea is to add up those onset features
that belong to pitches of the same pitch class. To make this work, we first evenly split
up the time axis into segments or frames of fixed length (In our experiments, we use a
length of 20 ms). Then, for each pitch, we add up all onset features that lie within a
segment. Note that due to the sparseness of the onset features, most segments do not
contain an onset feature. Since the values of the onset features across different pitches
may differ significantly, we take a suitable logarithm of the values, which accounts for
the logarithmic sensation of sound intensity. For example, in our experiments, we use
log(5000 · v+1) for an onset value v. Finally, for each segment, we add up the logarithmic
values over all pitches that correspond to the same chroma. For example, adding up the
logarithmic onset values that belong to the pitches A0,A1,. . .,A7 yields a value for the
chroma A. The resulting 12-dimensional features will be referred to as CO (chroma onset)
features, see Figure 7.3a.

The CO features are still very sensitive to local dynamic variations. As a consequence,
onsets in passages played in piano may be marginal in comparison to onsets in passages
played in forte. To compensate for this, one could simply normalize all non-zero CO feature
vectors. However, this would also enhance small noisy onset features that are caused by
mechanical noise, resonance, or beat effects thus leading to a useless representation, see
Figure 7.3b. To circumvent this problem, we employ a locally adaptive normalization
strategy. First, we compute the norm for each 12-dimensional CO feature vector resulting
in a sequence of norms, see Figure 7.3c (blue curve). Then, for each time frame, we assign
the local maxima of the sequence of norms over a time window that ranges one second to
the left and one second to the right, see Figure 7.3c (red curve). Furthermore, we assign
a positive threshold value to all those frames where the local maximum falls below that
threshold. The resulting sequence of local maxima is used to normalize the CO features
in a locally adaptive fashion. To this end, we simply divide the sequence of CO features
by the sequence of local maxima in a point-wise fashion, see Figure 7.3d. The resulting
features are referred to as LNCO (locally adaptive normalized CO) features. Intuitively,
LNCO features account for the fact that onsets of low energy are less relevant in musical
passages of high energy than in passages of low energy.

In summary, the octave identification makes LNCO features robust to variations in timbre.
Furthermore, because of the locally adaptive normalization, LNCO features are invariant
to variations in dynamics and exhibit significant onset values even in passages of low energy.
Finally, the LNCO feature representation is sparse in the sense that most feature vectors
are zero, while the non-zero vectors encode highly accurate temporal onset information.
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Figure 7.3. (a) Chroma onset (CO) features obtained from the onset representation of Figure 7.2.
(b) Normalized CO features. (c) Sequence of norms of the CO features (blue, lower curve) and
sequence of local maxima over a time window of ±1 second (red, upper curve). (d) Locally adaptive
normalized CO (LNCO) features. (e) Decaying LNCO (DLNCO) features.

In view of synchronization applications, we further process the LNCO feature representa-
tion by introducing an additional temporal decay. To this end, each LNCO feature vector
is copied n times (in the following experiments we use n = 10) and the copies are multi-
plied by decreasing positive weights starting with 1. Then, the n copies are arranged to
form short sequences of n consecutive feature vectors of decreasing norm starting at the
time position of the original vector. The overlay of all these decaying sequences results in a
feature representation, which we refer to as DLNCO (decaying LNCO) feature representa-
tion, see figures 7.3e and 7.6a. The benefit of these additional temporal decays will become
clear in the synchronization context, see Section 7.2.1. Note that in the DLNCO feature
representation, one does not lose the temporal accuracy of the LNCO features—the onset
positions still appear as sharp left edges in the decays. However, spurious double peaks,
which appear in a close temporal neighborhood within a chroma band, are discarded. By
introducing the decay, as we will see later, one loses sparseness while gaining robustness.

As a final remark of this section, we emphasize that the opposite variant of first computing
chroma features and then computing onsets from the resulting chromagrams is not as
successful as our strategy. As a first reason, note that the temporal resolution of the pitch
energy curves is much higher (2 − 10 ms depending on the respective pitch) then for the
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Figure 7.4. (a) Sequences of normalized chroma features for an audio version (left) and MIDI
version (right) of Burg2. (b) Corresponding sequences of DLNCO features.

chroma features (where information across various pitches is combined at a common lower
temporal resolution) thus yielding a higher accuracy. As a second reason, note that by
first changing to a chroma representation one may already loose valuable onset information.
For example, suppose there is a clear onset in the C3 pitch band and some smearing in
the C4 pitch band. Then, the smearing may overlay the onset on the chroma level, which
may result in missing the onset information. However, by first computing onsets for all
pitches separately and then merging this information on the chroma level, the onset of the
C3 pitch band will become clearly visible on the chroma level.

7.2 Synchronization Algorithm

In this section, we show how the proposed DLNCO features can be used to significantly
improve the accuracy of previous chroma-based strategies without sacrificing robustness
and efficiency. First, in Section 7.2.1, we introduce a combination of cost matrices that
suitably captures harmonic as well as onset information. Then, in Section 7.2.2, we discuss
how the new cost matrix can be plugged in an efficient multiscale music synchronization
framework by using an additional alignment layer.

7.2.1 Local Cost Measures and Cost Matrices

In the following, we consider the case of MIDI-audio synchronization. Other cases such
as audio-audio synchronization may be handled in the same fashion. Similar to most
synchronization algorithms [28, 31, 75, 130, 131, 174, 181], we employ in the following a
variant of the standard DTW algorithm as discussed in Section 4.3. For an illustration, we
refer to Figure 7.5, which shows various cost matrices along with optimal global alignment
paths.

The final synchronization result heavily depends on the type of features used to transform
the music data streams and the local cost measure used to compare the features. We now
introduce three different cost matrices, where the third one is a simple combination of the
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Figure 7.5. (a) Cost matrix Cchroma using normalized chroma features and the local cost
measure cchroma. The two underlying feature sequences are shown Figure 7.4a. A cost-minimizing
alignment path is indicated by the white line. (b) Cost matrix CDLNCO with cost-minimizing
alignment path using DLNCO features and cDLNCO. The two underlying feature sequences are
shown Figure 7.4b. (c) Cost matrix C = Cchroma + CDLNCO and resulting cost-minimizing
alignment path.
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Figure 7.6. Illustration of the effect of the decay operation on the cost matrix level. A match of
two onsets leads to a small corridor within the cost matrix that exhibits low costs and is tapered
to the left (where the exact onsets occur). (a) Beginning of the audio DLNCO representation (left
part of Figure 7.4b). (b) Beginning of the MIDI DLNCO representation (right part of Figure 7.4b).
(c) Resulting section of CDLNCO, see Figure 7.5b.

first and second one. The first matrix is a conventional cost matrix based on normalized
chroma features. Note that these features can be extracted from audio representations,
as described in Section 2, as well as from MIDI representations, as suggested in [75].
Figure 7.4a shows normalized chroma representations for an audio recording and a MIDI
version of Burg2, respectively. To compare two normalized chroma vectors v and w, we
use the cost measure cchroma(v, w) := 2−〈x, y〉. Note that 〈v, w〉 is the cosine of the angle
between v and w since the features are normalized. The offset 2 is introduced to favor
diagonal directions in the DTW algorithm in regions of uniformly low cost, see [131] for a
detailed explanation. The resulting cost matrix is denoted by Cchroma, see Figure 7.5a.

The second cost matrix is based on DLNCO features as introduced in Section 7.1.2. Again,
one can directly convert the MIDI version into a DLNCO representation by converting
the MIDI note onsets into pitch onsets. Figure 7.4b shows DLNCO representations for
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an audio recording and a MIDI version of Burg2, respectively. To compare two DLNCO
feature vectors, v and w we now use the Euclidean distance cDLNCO(v, w) := ‖v − w‖.
The resulting cost matrix is denoted by CDLNCO, see Figure 7.5b. At this point, we need
to make some explanations. First, recall that each onset has been transformed into a
short vector sequence of decaying norm. Using the Euclidean distance to compare two
such decaying sequences leads to a diagonal corridor of low cost in CDLNCO in the case
that the directions (i. e., the relative chroma distributions) of the onset vectors are similar.
This corridor is tapered to the lower left and starts at the precise time positions of the
two onsets to be compared, see Figure 7.6c. Second, note that CDLNCO reveals a grid like
structure of an overall high cost, where each beginning of a corridor forms a small needle’s
eye of low cost. Third, sections in the feature sequences with no onsets lead to regions in
CDLNCO having zero cost. In other words, only significant events in the DLNCO feature
sequences take effect on the cost matrix level. In summary, the structure of CDLNCO

regulates the course of a cost-minimizing alignment path in event-based regions to run
through the needle’s eyes of low cost. This leads to very accurate alignments at time
positions with matching chroma onsets.

The two cost matrices Cchroma and CDLNCO encode complementary information of the
two music representations to be synchronized. The matrix Cchroma accounts for the rough
harmonic flow of the two representations, whereas CDLNCO exhibits matching chroma
onsets. Forming the sum C = Cchroma + CDLNCO yields a cost matrix that accounts
for both types of information. Note that in regions with no onsets, CDLNCO is zero and
the combined matrix C is dominated by Cchroma. Contrary, in regions with significant
onsets, C is dominated by CDLNCO, thus enforcing the cost-minimizing alignment path
to run through the needle’s eyes of low cost. Note that in a neighborhood of these eyes,
the cost matrix Cchroma also reveals low costs due to the similar chroma distribution
of the onsets. In summary, the component Cchroma regulates the overall course of the
cost-minimizing alignment path and accounts for a robust synchronization, whereas the
component CDLNCO locally adjusts the alignment path and accounts for highly temporal
accuracy.

7.2.2 Multiscale Implementation

Note that the time and memory complexity of DTW-based music synchronization linearly
depends on the product N ·M of the lengths N and M of the feature sequences to be
aligned. For example, having a feature resolution of 20 ms and music data streams of
10 minutes of duration, results in N = M = 30000 making computations infeasible.
To overcome this problem, we adapt an efficient multiscale DTW (MsDTW) approach as
described in [131]. The idea is to calculate an alignment path in an iterative fashion by
using multiple resolution levels going from coarse to fine. Here, the results of the coarser
level are used to constrain the calculation on the finer levels, see Figure 7.7.

In a first step, we use the chroma-based MsDTW as described in [131]. In particular, we
employ an efficient MsDTW implementation in C/C++ (used as a MATLAB DLL), which
is based on three levels corresponding to a feature resolution of 1/3 Hz, 1 Hz, and 10 Hz,
respectively. For example, our implementation needs less than a second (not including
the feature extraction, which is linear in the length of the pieces) on a standard PC for
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Figure 7.7. Illustration of multiscale DTW. (a) Optimal alignment path (black dots) computed
on a coarse resolution level. (b) Projection of the alignment path onto a finer resolution level with
constraint region (dark gray) and extended constraint region (light gray). (c) Constraint region
for Burg2, cf. Figure 7.5c. The entries of the cost matrix are only computed within the constraint
region. The resulting MsDTW alignment path indicated by the white line coincides with the DTW
alignment path shown in Figure 7.5c.

synchronizing two music data streams each having a duration of 15 minutes of duration.
The MsDTW synchronization is robust leading to reliable, but coarse alignments, which
often reveal deviations of several hundreds of milliseconds.

To refine the synchronization result, we employ an additional alignment level corresponding
to a feature resolution of 50 Hz (i. e., each feature corresponds to 20 ms). On this level,
we use the cost matrix C = Cchroma + CDLNCO as described in Section 7.2.1. First,
the resulting alignment path of the previous MsDTW method (corresponding to a 10 Hz
feature resolution) is projected onto the 50 Hz resolution level. The projected path is
used to define a tube-like constraint region, see Figure 7.7b. As before, the cost matrix
C is only evaluated within this region, which leads to large savings if the region is small.
However, note that the final alignment path is also restricted to this region, which may
lead to incorrect alignment paths if the region is too small [131]. As our experiments
showed, an extension of two seconds in all four directions (left, right, up, down) of the
projected alignment path yields a good compromise between efficiency and robustness.
Figure 7.7c shows the resulting extended constraint region for our running example Burg2.
The relative savings with respect to memory requirements and running time of our overall
multiscale procedure increases significantly with the length of the feature sequences to be
aligned. For example, our procedure needs only around 3 · 106 of the total number of
150002 = 2.25 · 108 matrix entries for synchronizing two versions of a five minute piece,
thus decreasing the memory requirements by a factor of 75. For a ten minute piece, this
factor already amounts to 150. The relative savings for the running times are similar.

7.3 Resolution Refinement Through Interpolation

A synchronization result is encoded by an alignment path, which assigns the elements of
one feature sequence to the elements of the other feature sequence. Note that each feature
refers to an entire analysis window, which corresponds to a certain time range rather than
a single point in time. Therefore, an alignment path should be regarded as an assignment
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Figure 7.8. (a) Alignment path assigning elements of one feature sequence to elements of
the other feature sequence. The elements are indexed by natural numbers. (b) Assignment of
time ranges corresponding to the alignment path, where each feature corresponds to a time range
of 100 ms. (c) Staircase interpolation path (red line). (d) Density function encoding the local
distortions. (e) Smoothed and strictly monotonic interpolation path obtained by integration of
the density function.

of certain time ranges. Furthermore, an alignment path may not be strictly monotonic in
its components, i. e., a single element of one feature sequence may be assigned to several
consecutive elements of the other feature sequence. This further increases the time ranges
in the assignment. As illustration, consider Figure 7.8, where each feature corresponds to
a time range of 100 ms. For example, the fifth element of the first sequence (vertical axis)
is assigned to the second, third, and fourth element of the second sequence (horizontal
axis), see Figure 7.8a. This corresponds to an assignment of the range between 400 and
500 ms with the range between 100 and 400 ms, see Figure 7.8b. One major problem of
such an assignment is that the temporal resolution may not suffice for certain applications.
For example, one may want to use the alignment result in order to temporally warp CD
audio recordings, which are typically sampled at a rate of 44,1 kHz.

To increase the temporal resolution, one usually reverts to interpolation techniques. Many
of the previous approaches are based on simple staircase paths as indicated by the red
line of Figure 7.8c. However, such paths are not strictly monotonic and reveal abrupt
directional changes leading to strong local temporal distortions. To avoid such distortions,
one has to smooth the alignment path in such a way that both of its components are strictly
monotonic increasing. To this end, Kovar et al. [93] fit a spline into the alignment path and
enforce the strictness condition by suitably adjusting the control points of the splines. In
the following, we introduce a novel strictly monotonic interpolation function that closely
reflects the course of the original alignment path. Recall that the original alignment path
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ID Comp./Interp. Piece RWC ID Instrument
Burg2 Burgmüller Etude No. 2, Op. 100 – piano
BachFuge Bach Fuge, C-Major, BWV 846 C025 piano
BeetApp Beethoven Op. 57, 1st Mov. (Appasionata) C028 piano
ChopTris Chopin Etude Op. 10, No. 3 (Tristesse) C031 piano
ChopBees Chopin Etude Op. 25, No. 2 (The Bees) C032 piano
SchuRev Schumann Reverie (Träumerei) C029 piano
BeetFifth Beethoven Op. 67, 1st Mov. (Fifth) C003 orchestra
BorString Borodin String Quartett No. 2, 3rd Mov. C015 strings
BrahDance Brahms Hungarian Dance No. 5 C022 orchestra
RimskiBee Rimski-Korsakov Flight of the Bumblebee C044 flute/piano
SchubLind Schubert Op. 89, No. 5 (Der Lindenbaum) C044 voice/piano
Jive Nakamura Jive J001 piano
Entertain HH Band The Entertainer J038 big band
Friction Umitsuki Quartet Friction J041 sax,bass,perc.
Moving Nagayama Moving Round and Round P031 electronic
Dreams Burke Sweet Dreams P093 voice/guitar

Table 7.1. Pieces of music with identifier (ID) contained in our test database. For better repro-
duction of our experiments, we used pieces from the RWC music database [63,66].

encodes an assignment of time ranges. The basic idea is that each assignment defines
a local distortion factor, which is the proportion of the ranges’ sizes. For example, the
assignment of the range between 400 and 500 ms with the range between 100 and 400 ms,
as discussed above, defines a local distortion factor of 1/3. Elaborating on this idea, one
obtains a density function that encodes the local distortion factors. As an illustration, we
refer to Figure 7.8d, which shows the resulting density function for the alignment path of
Figure 7.8a. Then, the final interpolation path is obtained by integrating over the density
function, see Figure 7.8e. Note that the resulting interpolation path is a smoothed and
strictly monotonic version of the original alignment path. The continuous interpolation
path can be used for arbitrary sampling rates. Furthermore, as we will see in Section 7.4,
it also improves the final synchronization quality.

7.4 Experiments

In this section, we report on synchronization experiments, which have been conducted on a
corpus of harmony-based Western music. To allow for a reproduction of these experiments,
we use pieces from the RWC music database [63, 66]. In the following, we consider 16
representative pieces, which are listed in Table 7.1. These pieces are divided into three
groups, where the first group consists of six classical piano pieces, the second group of
five classical pieces of various instrumentations (full orchestra, strings, flute, voice), and
the third group of five jazz pieces and pop songs. Note that for pure piano music, one
typically has concise note attacks resulting in characteristic onset features. Contrary,
such information is often missing in string or general orchestral music. To account for
such differences, we report on the synchronization accuracy for each of the three groups
separately.

To demonstrate the respective effect of the different refinement strategies on the final
synchronization quality, we evaluate eight different synchronization procedures. The first
procedure (MsDTW) is the MsDTW approach as described in [131], which works with
a feature resolution of 10 Hz. The next three procedures are all refinements of the first
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procedure working with an additional alignment layer using a feature resolution of 50 Hz.
In particular, we use in the second procedure (Chroma 20ms) normalized chroma features,
in the third procedure (DLNCO) only the DLNCO features, and in the fourth procedure
(Chroma+DLNCO) a combination of these features, see Section 7.2.1. Besides the simple
staircase interpolation, we also refine each of these four procedures via smooth interpola-
tion as discussed in Section 7.3. Table 7.2, which will be discussed later in detail, indicates
the accuracy of the alignment results for each of the eight synchronization procedures.

To automatically determine the accuracy of our synchronization procedures, we use pairs
of MIDI and audio versions for each of the 16 pieces listed in Table 7.1. Here, the audio
versions were generated from the MIDI files using a high-quality synthesizer. Thus, for
each synchronization pair, the note onset times in the MIDI file are perfectly aligned with
the physical onset times in the respective audio recording (Only for our running example
Burg2, a MIDI version was manually aligned with a corresponding real audio recording).
In the first step of the evaluation process, the MIDI files were randomly distorted. To this
end, the MIDI files were split up into N segments of equal length (in our experiment we
used N = 20). Each segment was then stretched or compressed by a random factor within
an allowed distortion range (in our experiments we used a range of ±30%). We refer to
the resulting MIDI file as the distorted MIDI file in contrast to the original annotation
MIDI file. In the second evaluation step, the distorted MIDI file and the associated audio
recording were synchronized. The resulting alignment path was used to adjust the note
onset times in the distorted MIDI file to obtain a third MIDI file referred to as realigned
MIDI file. The accuracy of the synchronization result can now be determined by comparing
the note onset times of the realigned MIDI file with the corresponding note onsets of the
annotation MIDI file. Note that in the case of a perfect synchronization, the realigned
MIDI file exactly coincides with the annotation MIDI file.

For each of the 16 pieces (Table 7.1) and for each of the eight different synchronization
procedures, the corresponding realigned MIDI file was computed. One can then calculate
the mean value, the standard deviation, as well as the maximal value over all note onset
differences comparing the respective realigned MIDI file with the corresponding annotation
MIDI file. Thus, for each piece, we obtain 24 statistical values, which are shown in
Table 7.2. Actually, all experiments were repeated with five different randomly distorted
MIDI files and all statistical values are averaged over these five repetitions. For example
the value 73 in the first row of Table 7.2 means that for the piece Burg2 the difference
between the note onsets of the realigned MIDI file and the annotation MIDI file was in
average 73 ms when using the MsDTW synchronization approach in combination with a
staircase interpolation. In other words, the average synchronization error of this approach
is 73 ms for Burg2.

We start the discussion of Table 7.2 by looking at the values for the first group consisting
of six piano pieces. Looking at the averages of the statistical values over the six pieces,
one can observe that the MsDTW procedure is clearly inferior to the other procedures.
This is by no surprise, since the feature resolution of MsDTW is 100 ms compared to the
resolution of 20 ms used in the other approaches. Nevertheless the standard deviation and
maximal deviation of MsDTW is small relative to the mean value indicating the robustness
of this approach. Using 20 ms chroma features, the average mean values decreases from
100 ms (MsDTW) to 51 ms (Chroma 20 ms). Using the combined features, this value fur-
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staircase smooth
ID Procedure mean std max mean std max

Burg2 MsDTW 73 57 271 71 65 307
Chroma 20ms 49 43 222 50 48 228
DLNCO 31 20 94 21 17 73
Chroma+DLNCO 28 16 77 18 14 61

BachFuge MsDTW 97 55 319 55 41 223
Chroma 20ms 34 34 564 27 33 554
DLNCO 20 30 318 18 27 296
Chroma+DLNCO 18 15 96 14 12 81

BeetApp MsDTW 116 102 1197 77 94 1104
Chroma 20ms 62 58 744 54 58 757
DLNCO 136 318 2323 131 318 2335
Chroma+DLNCO 37 41 466 29 40 478

ChopTris MsDTW 115 76 1041 72 62 768
Chroma 20ms 66 69 955 57 64 754
DLNCO 30 68 1318 22 68 1305
Chroma+DLNCO 31 34 539 22 33 524

ChopBees MsDTW 108 79 865 59 71 817
Chroma 20ms 41 49 664 30 47 625
DLNCO 20 14 104 12 9 95
Chroma+DLNCO 22 24 366 13 21 355

SchuRev MsDTW 93 95 887 66 77 655
Chroma 20ms 51 80 778 46 72 567
DLNCO 98 261 1789 94 264 1841
Chroma+DLNCO 22 38 330 15 36 315

Average over piano examples MsDTW 100 77 763 67 68 646
Chroma 20ms 51 56 655 44 54 581
DLNCO 56 119 991 50 117 991
Chroma+DLNCO 26 28 312 19 26 302

BeetFifth MsDTW 194 124 1048 142 116 952
Chroma 20ms 128 98 973 116 96 959
DLNCO 254 338 2581 241 338 2568
Chroma+DLNCO 128 99 1144 116 98 1130

BorString MsDTW 157 110 738 118 106 734
Chroma 20ms 88 68 584 79 68 576
DLNCO 275 355 2252 268 356 2233
Chroma+DLNCO 91 57 682 82 56 675

BrahDance MsDTW 104 62 385 64 54 470
Chroma 20ms 58 54 419 50 54 427
DLNCO 31 52 567 26 52 556
Chroma+DLNCO 24 22 185 17 20 169

RimskiBee MsDTW 99 48 389 50 32 196
Chroma 20ms 51 17 167 41 17 155
DLNCO 31 23 183 22 19 160
Chroma+DLNCO 37 17 108 27 15 91

SchubLind MsDTW 124 73 743 78 59 549
Chroma 20ms 66 57 718 55 50 509
DLNCO 79 175 1227 70 173 1206
Chroma+DLNCO 41 36 406 31 34 387

Average over various instrumentation examples MsDTW 136 83 661 90 73 580
Chroma 20ms 78 59 572 68 57 525
DLNCO 134 189 1362 125 188 1345
Chroma+DLNCO 64 46 505 55 45 490

Jive MsDTW 97 105 949 58 93 850
Chroma 20ms 44 61 686 34 59 668
DLNCO 23 38 638 17 37 632
Chroma+DLNCO 22 18 154 14 15 158

Entertain MsDTW 100 67 579 66 58 492
Chroma 20ms 52 44 407 45 46 414
DLNCO 93 204 1899 85 204 1887
Chroma+DLNCO 40 65 899 31 64 889

Friction MsDTW 94 81 789 58 75 822
Chroma 20ms 47 67 810 39 67 815
DLNCO 44 120 2105 37 117 2106
Chroma+DLNCO 30 55 810 23 55 819

Moving MsDTW 114 76 497 76 64 473
Chroma 20ms 77 51 336 68 50 343
DLNCO 127 216 1443 124 217 1432
Chroma+DLNCO 53 45 284 46 43 275

Dreams MsDTW 136 105 659 115 106 674
Chroma 20ms 97 94 702 91 95 673
DLNCO 73 103 692 71 103 702
Chroma+DLNCO 43 57 429 40 58 434

Average over jazz/pop examples MsDTW 108 87 695 75 79 662
Chroma 20ms 63 63 588 55 63 583
DLNCO 72 136 1355 67 136 1352
Chroma+DLNCO 38 48 515 31 47 515

Average over all examples MsDTW 114 82 710 77 73 630
Chroma 20ms 63 59 608 55 58 564
DLNCO 85 146 1221 79 145 1214
Chroma+DLNCO 42 40 436 34 38 428

Table 7.2. Alignment accuracy for eight different synchronization procedures (MsDTW, Chroma
20 ms, DLNCO, Chroma+DLNCO with staircase and smooth interpolation, respectively). The
table shows for each of the eight procedures and for each of 16 pieces (Table 7.1) the mean value, the
standard deviation, and the maximal value over all note onset difference of the respective realigned
MIDI file and the corresponding annotation MIDI file. All values are given in milliseconds.
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ther decreases to 26 ms (Chroma+DLNCO). Furthermore, using the smooth interpolation
instead of the simple staircase interpolation further improves the accuracy, for example,
from 100 ms to 67 ms (MsDTW) or from 26 ms to 19 ms (Chroma+DLNCO). Another
interesting observation is that the pure DLNCO approach is sometimes much better (e. g.
for ChopBees) but also sometimes much worse (e. g. for BeetApp) than the Chroma 20ms
approach. This shows that the DLNCO features have the potential for delivering very
accurate results but also suffer from a lack of robustness. It is the combination of the
DLNCO features and chroma features which ensures robustness as well as accuracy of the
overall synchronization procedure.

Next, we look at the group of the five classical pieces of various instrumentations. Note
that for the pieces of this group, opposed to the piano pieces, one often has no clear note
attacks leading to a much poorer quality of the onset features. As a consequence, the
synchronization errors are on average higher than for the piano pieces. For example, the
average mean error over the second group is 136 ms (MsDTW) and 134 ms (DLNCO)
opposed to 100 ms (MsDTW) and 56 ms (DLNCO) for the first group. However, even in
the case of missing onset information, the synchronization task is still accomplished in a
robust way by means of the harmony-based chroma features. The idea of using the com-
bined approach (Chroma+DLNCO) is that the resulting synchronization procedure is at
least as robust and exact as the pure chroma-based approach (Chroma 20 ms). Table 7.2
demonstrates that this idea is realized by the implementation of the combined synchro-
nization procedure. Similar results are obtained for the third group of jazz/pop examples,
where the best results were also delivered by the combined approach (Chroma+DLNCO).

At this point, one may object that one typically obtains better absolute synchronization
results for synthetic audio material (which was used to completely automate our evalua-
tion) than for non-synthetic, real audio recordings. We therefore included also the real
audio recording Burg2, which actually led to similar results as the synthesized examples.
Furthermore, our experiments on the synthetic data are still meaningful in the relative
sense by revealing relative performance differences between the various synchronization
procedures. Finally, we also generated MIDI-audio alignments using real performances of
the corresponding pieces (which are also contained in the RWC music database). These
alignments were used to modify the original MIDI files to run synchronously to the audio
recordings. Generating a stereo file with a synthesized version of the modified MIDI file in
one channel and the audio recording in the other channel, we have acoustically examined
the alignment results. The acoustic impression supports the evaluation results obtained
from the synthetic data. The stereo files have been made available on a website1.

For the experiments of Table 7.2, a distortion range of ±30% was used, which is motivated
by the observation that the relative tempo difference between two real performances of
the same piece mostly lies within this range. In a second experiment, we investigate the
dependency of the final synchronization accuracy on the size of the allowed distortion
range. To this end, the mean values of the synchronization error were calculated for each
of the 16 pieces using different distortion ranges from ±10% to ±50%. Table 7.3 shows the
resulting vales for two of the eight synchronization procedures described above, namely
MsDTW and Chroma+DLNCO both post-processed with smooth interpolation. As one
may expect, the mean error values increase with the allowed distortion range. For example,

1http://www.mpi-inf.mpg.de/resources/MIR/SyncRWC60/

http://www.mpi-inf.mpg.de/resources/MIR/SyncRWC60/
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Distortion range
ID Procedure ±10% ±20% ±30% ±40% ±50%

Burg2 MsDTW 48 53 65 85 94
Chroma+DLNCO 15 16 19 17 22

BachFuge MsDTW 44 49 52 62 67
Chroma+DLNCO 11 12 13 15 15

BeetApp MsDTW 53 68 75 96 170
Chroma+DLNCO 22 25 29 36 98

ChopTris MsDTW 57 64 72 75 82
Chroma+DLNCO 18 19 21 22 29

ChopBees MsDTW 51 54 57 60 67
Chroma+DLNCO 11 12 13 14 18

SchuRev MsDTW 50 58 64 77 85
Chroma+DLNCO 11 14 12 13 22

Average over piano examples MsDTW 51 58 64 76 94
Chroma+DLNCO 15 16 18 20 34

BeetFifth MsDTW 119 126 141 143 184
Chroma+DLNCO 101 106 113 113 145

BorString MsDTW 86 97 109 118 153
Chroma+DLNCO 75 78 82 84 101

BrahDance MsDTW 52 58 66 70 81
Chroma+DLNCO 13 15 18 19 25

RimskiBee MsDTW 49 47 52 53 56
Chroma+DLNCO 25 26 26 28 28

SchubLind MsDTW 69 73 78 99 91
Chroma+DLNCO 28 28 31 35 35

Average over various MsDTW 75 80 89 97 113
instrumentation examples Chroma+DLNCO 48 51 54 56 67

Jive MsDTW 44 62 50 63 77
Chroma+DLNCO 12 13 14 14 15

Entertain MsDTW 47 53 62 78 94
Chroma+DLNCO 21 25 30 36 44

Friction MsDTW 44 48 54 70 82
Chroma+DLNCO 14 17 22 28 37

Moving MsDTW 61 63 75 127 871
Chroma+DLNCO 33 39 47 59 732

Dreams MsDTW 71 84 114 142 178
Chroma+DLNCO 24 28 39 52 85

Average over jazz/pop examples MsDTW 53 62 71 96 260
Chroma+DLNCO 21 24 30 38 183

Average over all examples MsDTW 59 66 74 89 152
Chroma+DLNCO 27 30 33 37 91

Table 7.3. Dependency of the final synchronization accuracy on the size of the allowed distortion
range. For each of the 16 pieces and each range, the mean values of the synchronization errors
are given for the MsDTW and Chroma+DLNCO procedure both post-processed with smooth
interpolation. All values are given in milliseconds.

the average mean error over all 16 pieces increases from 59 ms to 152 ms for the MsDTW
and from 27 ms to 91 ms for the combined procedure (Chroma+DLNCO). However, the
general behavior of the various synchronization procedures does not change significantly
with the ranges and the overall synchronization accuracy is still high even in the presence
of large distortions. As an interesting observation, for one of the pieces (Moving) the mean
error exploded from 59 ms to 732 ms (Chroma+DLNCO) when increasing the range from
±40% to ±50%. Here, a manual inspection showed that, for the latter range, a systematic
synchronization error happened. Here, for an entire musical segment of the piece, the
audio version was aligned to a similar subsequent repetition of the segment in the distorted
MIDI version. However, note that such strong distortion (±50% corresponds to the range
of having half tempo to double tempo) rarely occurs in practice and only causes problems
for repetitive music.
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7.5 Conclusions

In this chapter, we have discussed various refinement strategies for global music synchro-
nization. Based on a novel class of onset-based audio features in combination with previous
chroma features, we introduced a new synchronization procedure that can significantly
improve the synchronization accuracy while preserving the robustness and efficiency of
previously described procedures. For the future, one could further extend the proposed
synchronization framework by including various features types that also capture local
rhythmic information [94] and that detect even smooth note transitions as often present
in orchestral or string music [198].

7.6 Further Notes

We conclude the second part of the thesis with an overview of further synchronization
methods described in the literature. For a discussion of earlier approaches such as [25] we
refer to [84,116]. In the following, we concentrate on more recent approaches proposed in
the last years.

In this thesis, we focused on the offline music synchronization scenario meaning that all
versions to be aligned are entirely available before the actual alignment. However, there
are also several synchronization approaches operating in an online fashion where one of
the versions is recorded in real-time [18–20, 36, 104, 114]. In [20], the author employs a
hybrid between a hidden Markov model and a hidden semi-Markov model to identify the
current tempo and score position in real-time. The tempo estimation is based on a set of
oscillators. Their resonance frequency is chosen to capture the tempo at several metrical
levels (compare also [161]). Designed to align single-instrument polyphonic audio with
a given score, the approach relies on low level features derived from the spectrogram to
compare the different music representations. Similar to automatic accompaniment, the
system was employed to automatically trigger acoustic sounds in real-time as part of a
human-computer performance, see [19]. In [36], an online synchronization approach is
presented based on a state-space model. In an alignment context, state-space models are
conceptually similar to hidden Markov models (HMMs). However, a major difference to
HMMs, which employ a finite set of hidden states to compute an alignment, is that state-
space models often employ a continuous, infinite set of states. Here, a change of states
is not described by a transition within a graphical model (HMM) but by a (continuous)
function that maps the current state to a new state. While in HMMs a sequence of states
that optimally explains a given sequence of observations can always be computed using the
Viterbi algorithm [150], such concepts can not be directly applied to state-space models.
In cases where the state mapping function is linear, Kalman filtering can be used to find
the optimal state sequence. In other cases, one has to revert to approximative solutions.
One of these techniques is particle filtering, which is also called sequential Monte Carlo
sampling. For more details, see also the tutorial on particle filters in [32]. In [36],
the use of particle filtering allows for estimating the current score position and tempo as
continuous variables. Another system which partly employs particle filtering was presented
in [18,114]. In [18], a MIDI-audio alignment is computed in real-time using a hierarchical
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hidden Markov model which combines particle filtering techniques with a procedure similar
to Viterbi decoding. The method relies on accurate training material as well as knowledge,
which instruments are active in a given recording. In [114], an improved version of this
approach is presented, which additionally allows for audio-audio synchronization. In [104],
a windowed variant of dynamic time warping is presented, which allows for synchronizing
music representations in near real-time. Here, the idea is to employ standard DTW in a
first step to compute a small fraction of the optimal global path using only a part of the
cost matrix as defined by a window. Based on the computed local alignment, the window
is moved such that another fraction of the optimal global path can be computed in the
next step. Heuristics for path cost estimation further reduce the number of evaluated cells.
While the procedure significantly reduces the computational costs, it does not guarantee
that the optimal global path is actually computed.

Also in the offline synchronization context, several methods have been proposed in recent
years [83–85, 109, 132, 134]. In [84], a novel offline synchronization approach is presented
based on a conditional random field (CRF). While a CRF is a discrete graphical model
similar to an HMM, CRFs allow for the formulation of more general graph structures. In
particular, a major difference is that a CRF can employ several observation feature vectors
to model the local likelihood of a specific state. In an HMM, the local state likelihood
can only depend on a single observation vector. From a conceptual point of view, CRFs
employ ideas similar to the cost matrix smoothing techniques described in Section 4.1. To
allow for an efficient computation of the alignment result, the authors propose in [84] a
hierarchical decoding method (first described in [83]), which is conceptually similar to the
multiscale DTW idea described in Section 7.2. In [85] similar concepts as proposed in [84]
are presented based on the dynamic Bayesian network (DBN) formalism.

In [132], a novel DTW-based synchronization approach is presented, which additionally
employs non-negative matrix factorization (NMF) to post-process the computed alignment
results (NMF will be discussed in more detail in Chapter 10). The general idea is to em-
ploy a fixed, pre-trained set of NMF-template vectors to analyze the audio signal with the
goal to detect sudden pitch-wise energy-increases in the resulting NMF activities. Inter-
preting these energy-increases as potential onset positions allows then for further refining
the onset positions for individual note events. This way, the approach can correctly align
arpeggios, which are often notated as concurrent chord notes in a given score. However, in
cases where onsets are hard to detect, this weakly constrained post-processing technique
often results in misaligning note events with falsely detected onset positions. In [134], an
improved version of this approach is presented. Here, the NMF step is only used to identify
anchor notes which are assumed to be correctly aligned. Note events between anchor notes
are further refined based on interpolation techniques that additionally take the rhythmic
information provided by the score into account. In [109], an offline synchronization tech-
nique based on a Bayesian hidden Markov model is presented. To compare a given score
with the audio, the alignment procedure employs parameters describing the timbre, the
fundamental frequency, and the volume related to note events. The synchronization is then
performed by iteratively updating these parameters as well as the alignment. While the
general approach is promising, the reported results seem to be below the state-of-the-art.

As we have already seen in Part I, the choice of features is important for many tasks
in the field of music information retrieval. Also in the context of music synchronization,



94 CHAPTER 7. HIGH RESOLUTION MUSIC SYNCHRONIZATION

several feature modifications have been proposed to improve the overall synchronization
quality [18, 80, 86, 133]. In [80] and [86], the authors have employed training material
to learn a linear mapping that can be used for pre-processing pitch features to enhance
the synchronization accuracy. A difference between both approaches is that the authors
in [80] incorporate a mapping to derive chroma features from the pitch features, while the
authors in [86] employ the enhanced pitch features directly within their synchronization
approach. In [18], the authors use non-negative matrix factorization (NMF) to improve
the expressiveness of their features. To this end, pitch-wise template vectors are learned in
a preprocessing step for each possible instrument. At runtime, the audio signal is analyzed
using the pre-learnt template dictionary, which allows for a more precise assessment of the
active pitches in a given time frame. However, a disadvantage is that one needs to know
which instruments appear in a given recording. In [133], a similar procedure is proposed
but instead of learning the templates instruments-wise, they are averaged over the entire
training database.

In recent years, much efforts have been directed towards systems that allow for synchro-
nizing music representations across various domains [34, 52–56, 89, 96, 105, 106, 111, 179].
In [89], the goal is to align lyrics given as text files to corresponding audio recordings. The
approach combines rhythm and structure analysis methods [62] to link lyrics passages to
corresponding audio segments. The method proposed in [55, 56] employs source separa-
tion techniques (PreFEst approach [64]) to improve the robustness of the lyrics alignment.
In a first step, the main melody is extract from a given recording, which corresponds to
the singing voice in most pop songs. The separation result is then synchronized with
the textual lyrics using a method similar to regular text-to-speech alignment techniques.
In [111] the approach is extended by additionally incorporating automatic methods for
harmonic analysis. Here, chord information linked to the lyrics is exploited to stabilize
the alignment accuracy. In [96], a method is presented for linking pixel positions in a
scanned score image to their corresponding positions in a given audio recording. The
approach employs optical music recognition (OMR) techniques to derive an intermediate
MIDI-like score representation, which is then synchronized with the audio file. In [52–54]
several extensions to this approach are presented. In [54], the authors introduce a novel
procedure for mapping single scanned pages of sheet music to corresponding audio clips
contained in a given collection of audio recordings. Corresponding score pages and audio
segments are aligned similar to [96]. An enhanced version of this approach is presented
in [52]. In [53], the approach is further extended using a variant of dynamic time warping,
referred to as JumpDTW, which incorporates information about potential jump and re-
peat position as provided by the score. This way, the scanned score and a corresponding
audio recording can be reliably synchronized even if the number of repetitions is unknown
for certain parts of the score. A similar approach was also presented in [34] in the context
of lead-sheet/audio synchronization. Here, semi-improvised jazz recordings are aligned
to lead-sheets which only specify essential musical elements such as the melody and the
harmony. As potential jump and repeat positions are not specified as part of a lead-sheet
the authors employ manual annotations of these positions. In [105], the authors present a
novel approach which synchronizes guitar tablatures with corresponding audio recordings
in real-time. Here, the idea is to combine real-time chord recognition techniques [175]
with the windowed variant of dynamic time warping proposed in [104]. This alignment
technique is also used in [106] to synchronize internet streaming video with high quality
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audio versions. Finally, building on top of the system introduced in [96], the authors
present in [179] a system which allows for a synchronized playback of audio, video, score,
and lyrics data.
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Part III

Score-Informed Audio Processing
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Chapter 8

Score-Informed Source Separation

The decomposition of a mixture of superimposed acoustic sound sources into its con-
stituent components, a task also known as source separation, is one of the central research
topics in digital audio signal processing [33, 37, 64, 72, 137, 183]. For example, in speech
signal processing, an important task is to separate the voice of a specific speaker from
a mixture of conversations of multiple speakers and background noises (“Cocktail party
scenario”), see for example [87]. Also in the field of musical signal processing, there are
many related issues that are commonly subsumed under the notion of source separation.
In the musical context, a source might correspond to a melody, a bassline, a drum track,
or an instrument track. To extract such sources various elaborate processing and analysis
methods have been developed, which has led to significant improvements for tasks such
as instrument recognition [72], harmonic analysis [183], or melody estimation [37]. Most
of these methods exploit certain spectral and temporal properties of the sound sources
to be extracted. For example, the melody is often the leading voice characterized by its
dominance in dynamics and by its temporal continuity [9,33]. Or the track of a bass guitar
may be identified by specifically looking at the lower part of the frequency spectrum [64].
Furthermore, when extracting the drum track, one often relies on the assumption that
the other sources are of harmonic nature. Then, one can exploit the fact that percussive
elements (vertical spectral structures) are fundamentally different from harmonic elements
(horizontal spectral structures) [137]. Last but not least, a human singing voice can of-
ten be distinguished from other musical sources because of the presence of vibrato and
portamento (sliding voice) effects [156].

In the last years, also multimodal, score-informed source separation strategies have been
employed where one assumes the availability of a score representation along with the
music recording. Here, the score provides valuable information in two respects. On the
one hand, pitch and timing of note events provide a rough guidance during the separation
process. On the other hand, the score provides a natural way of specifying what and how
sound sources are to be separated. For example, in [74] the score’s natural partition into
instrument tracks is exploited to extract each individual instrument from a given audio
recording, see Figure 8.1a for an illustration. Here, the score provides additional cues on
the sources’ spectral and temporal properties. In [78], it was further demonstrated that
this concept can also be incorporated into an intuitive and easy-to-use interface. Here, the
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Figure 8.1. Score-informed source separation: (a) Instrument tracks as specified by a given score
are employed for the separation of instrument sounds from a polyphonic audio recording (figure
inspired by [74]). (b) Separated signals corresponding to instrument tracks can be remixed by the
user in real-time (figure inspired by [78]).

user can adjust the volume of each instrument in real-time using an interactive equalizer,
see Figure 8.1b. As an introduction to the task of score-informed source separation, we
start the final part of this thesis with a comprehensive overview of available methods
and strategies. Rather than focusing on technical details, we will highlight conceptual
differences between the individual approaches. In the upcoming Chapter 9 and Chapter 10,
we then introduce novel computational approaches to score-informed source separation
demonstrating in detail how the score information is employed to guide the separation
process.

8.1 Overview of Available Approaches

In the context of score-informed source separation, music synchronization methods as intro-
duced in Part II of this thesis are of particular importance thus we will discuss their use in
the following explicitly. In particular, we distinguish two groups of separation approaches.
Methods in the first group employ robust and accurate synchronization techniques and
consider or even account for typical differences between the score and a given interpreta-
tion, for example, in terms of structure, ornamentation, the interpretation of trills and
arpeggios as well as additional and missed notes. By adjusting the onset position and
duration of each MIDI event, these approaches use the computed synchronization result
to transform the original score-like MIDI file to a synchronized MIDI file, which runs syn-
chronously to the audio, see Figure 8.2. Methods in the second group simply assume
that perfectly synchronized MIDI files are available. This assumption, however, is often
not realistic in real-world scenarios. The practical applicability of these approaches is
therefore often hard to assess.
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Figure 8.2. Music synchronization for a score and an audio recording of Chopin’s Op. 28 No. 15:
(a) Musical score. (b) Audio recording of an interpretation taken from the SMD database [124].
(c) Score-like MIDI file generated from the score shown in (a). (d) Synchronized MIDI file.

Early score-informed source separation approaches adopt score and MIDI information only
for evaluation purposes, for example, to investigate the influence of a pitch estimation
step in a complex separation system [148]. One of the first approaches focusing on the
conceptual benefits of incorporating score information was proposed in [166]. Here, the
task consists in separating a single instrument specified by a given score-like MIDI file from
a polyphonic music recording. The main idea is based on designing a filter, which in some
sense optimally extracts the instrument from the recording. To compute the MIDI-audio
synchronization, the authors refer to a procedure previously proposed in [165]. While
presenting a novel application idea, this early work has several conceptual limitations.
First of all, the proposed filter design procedure models all non-target sound sources as
Gaussian noise. Therefore, in cases where the target instrument is accompanied by other
instruments, this assumption is obviously violated. Furthermore, the proposed method
assumes that the score provides an exact specification of the fundamental frequency for
the target instrument for each analysis frame. This assumption is not realistic, since
the score usually provides only high-level note information of the piece of music without
specifying tuning or small pitch deviations of the respective music recording.

Subsequently proposed systems were not subject to such strict limitations. In [195], the
authors integrate score information into a system for blind source separation previously
described in [194] (an extended version was presented in [193]). Here, the goal is to extract
individual instruments from a music recording, which then enables a user to create new
music by remixing the extracted sound sources. In this approach, stereo information is
employed in a first step to determine for each analysis frame the number of concurrent
sources. Frames identified to contain only a single source are used as cues in the consecutive
pitch-tracking step to support the separation in frames with multiple sources. The authors
incorporate score information into this process as a rough guidance for the pitch-tracking.
The underlying MIDI-audio alignment is based on a procedure proposed by Hu et al. [75].
A technical limitation of the approach is its dependency on reliable stereo information to
identify the sources. This is problematic for many commercial studio productions, where
spatial information contained in the stereo recordings is often corrupted by digital effect
filters and virtual room acoustics. Furthermore, the influence of the alignment step is
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hard to assess from the experimental results, as the method is only evaluated on a dataset
consisting of four second snippets of synthetically created MIDI sonifications.

While score information is used in [195] mostly as an add-on to an existing source sepa-
ration system, Han and Raphael presented in [68, 69] a model that completely relies on
available score data. In their contribution, the authors aim at removing the soloist from
orchestral music recordings to generate recordings that can be used as a basis for auto-
mated accompaniment systems [29]. Relying on score information at an early stage of their
algorithmic pipeline allowed for innovative computational concepts. On the one hand, the
method represents a given input spectrogram as a compound of note-event based models.
This allows for effectively using the score information to specify the temporal and spectral
extent in which a note-event is permitted to be active. On the other hand, the score is
used to identify the instruments occurring in a given music recording. This way, some
instrument-dependent model parameters such as overtone energy distributions can simply
be learnt from monophonic training material in advance and fixed afterwards. A benefit of
this approach is that the parameter estimation process becomes efficient (as only a small
set of parameters needs to be adjusted) and robust (as unreasonable parameter values are
prevented by the model). However, a drawback is that the model can be imprecise, in
particular when the training instruments differ strongly from the ones used in the given
recording.

Roughly at the same time, Itoyama et al. presented a system, which explored novel appli-
cation scenarios based on score-informed source separation [78]. This system allows a user
to adjust the volume of each instrument in a polyphonic music recording in real-time. To
this end, the system separates the individual instrument tracks in a preprocessing step as
follows. In a first step, a MIDI synthesizer is employed to create one audio representation
for each of the instrument tracks contained in a given MIDI file. This audio data is used
as prior knowledge to initialize a note-based spectrogram model. Next, the model param-
eters are adapted to a given audio recording by minimizing a Kullback-Leibler distance
between the given spectrogram and the model spectrogram. Here, to allow only musically
meaningful values for the model parameters, strong deviations from the initial values set
in the first step are penalized. In a final step, the spectrogram model is employed to isolate
the individual instrument tracks as specified by the MIDI file. Technically, the model is
based on the harmonic-temporal-structured clustering (HTC) model proposed in [88]. To
control the influence of their percussion related submodel on the remaining system, the
authors have to resort to smoothing and regulation techniques [77], which further increase
the complexity of the system. Furthermore, alignment issues are not considered in this
approach, hence it is not clear how the system behaves in real-world scenarios starting
with score-like MIDI files.

Using MIDI-synthesized audio material for initialization purposes was also proposed by
Gansemann et al. in [58,59]. Given a MIDI file and an audio recording for a piece of music,
the approach starts by sonifying the MIDI instrument tracks using a wavetable synthesizer
similar to [78]. In a next step, probabilistic latent component analysis (PLCA) [167] is
employed to identify the most important spectral components for each sonification. Here,
PLCA is a probabilistic formulation of the well-known non-negative matrix factorization
(NMF) method, which will be discussed in more detail in Chapter 10. In a last step, the
instrument-wise spectral components are used as initialization and additional knowledge
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for a prior-based PLCA analysis of the original audio recording [172]. The results of
this final analysis are subsequently used to extract each instrument from the original
recording. Incorporating an alignment procedure by Turetsky and Ellis [181], the authors
aim at using full-length score-like MIDI files as they can be found in real-world scenarios.
While this approach presents a novel computational concept, the approach suffers from
several weaknesses. Similar to all approaches relying on synthetic audio material as prior
knowledge, this method’s separation quality depends on the spectral similarity between
the MIDI instruments and the actual target instruments. Moreover, this method also
requires that the MIDI instruments have a similar tuning as the instruments in the given
audio recording. For large tuning deviations, the separation quality might be significantly
reduced.

An alternative way of using MIDI information for initialization purposes was presented
in [74]. Here, instead of generating synthetic audio, the MIDI file is used to directly instruct
the underlying spectrogram model when a given instrument is active with a certain pitch.
This way, the separation performance does not depend on the quality of an underlying
MIDI synthesizer. However, as a drawback, no expectations about the spectral shape of
an instrument are incorporated, which may lead to a less robust separation process. As a
novel contribution, the method employs a parametric NMF variant [73], which significantly
enhances the modeling accuracy for instruments with vibrato and glissando. A technical
limitation of this model is that all harmonic sounds in an analysis frame are assumed to be
a compound of stationary sinusoidals. To evaluate the instrument separation quality of this
approach, the authors neglect the alignment step and employ synthetic MIDI sonifications
of Bach, Beethoven and Boccherini pieces.

As demonstrated by Duan and Pardo in [35], the separation step can be performed in a
low-delay real-time fashion. To this end, the authors replace the usually employed offline
synchronization step by an online approach [36], which aligns a given MIDI file and a
corresponding audio recording in real-time, a task often referred to as score-following [20,
29]. For each analysis frame, their separation system first estimates the exact fundamental
frequency of each pitch using the aligned MIDI file as a guidance. In a next step, each pitch
is extracted using a harmonic mask and assigned to one of the instruments as specified by
the MIDI file. To make this process feasible in real-time, the mask is computed using a
fixed overtone model, which is not adapted to a given recording.

Overall, while source separation has been a field of research for decades, using score infor-
mation to guide the separation process is a relatively recent approach. As demonstrated
by the contributions discussed in this section, score guidance allows for novel and inno-
vative applications of source separation techniques. Furthermore, the additional musical
cues provided by the score often allow for a gain in separation quality, which is difficult
to achieve otherwise. Moreover, robust music synchronization techniques allow for us-
ing score-informed source separation methods in real-world scenarios, where usually no
perfectly aligned MIDI file is available.
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Chapter 9

Audio Parameterization

In general, separating sound sources from polyphonic music recordings requires an under-
standing of many musical and technical aspects. For example, one has to account for the
complexity of musical sound sources, the interaction and superposition of such sources
in polyphonic mixtures, room acoustics, and recording conditions. Additionally, in many
studio productions, numerous digital effect filters are applied to the recording thus making
the task even more complex. However, although being extremely difficult, source separa-
tion is mostly pursued in a blind fashion, where as little prior knowledge as possible is
used. A natural idea to facilitate the separation process is to incorporate additional musi-
cal cues, for example, in the form of available musical score data. Based on this idea, this
chapter presents a novel approach for separating musically meaningful sound sources from
polyphonic audio recordings. More precisely, given a MIDI file and an audio recording of
a piece of music, the idea is to employ a parametric model that describes a spectrogram as
a sum of note-event spectrograms. Here, each note-event spectrogram describes the part
of a spectrogram that can be attributed to a specific note event. The proposed method
starts by initializing the pitch, onset, and duration parameters in the spectrogram model
using the note events provided by the MIDI file. In the second step, we adapt the onset
and duration parameters by aligning the note events with their corresponding occurrences
in the audio using the high-resolution music synchronization approach described in Chap-
ter 7. In the third step, we iteratively modify model parameters related to the acoustic
representation of a note event such that the model spectrogram approximates the audio
spectrogram as accurately as possible.

To investigate the separation quality of the proposed method we consider two use cases
(Section 9.2 and Section 9.3). In particular, we investigate how an instrument equalizer
as described in Chapter 8 can be extended to a more general voice or note equalizer.
Here, instead of just having the possibility to emphasize or attenuate entire instrument
tracks a user can freely choose which group of notes should be in the focus. For example,
a user might highlight a melody, a specific motif, the left or the right hand of a piano
score, or an entire staff. To demonstrate this concept, a prototypical implementation of
a novel interface is presented using the multimodal music player presented in [22, 23] as
a basis. This interface shows a score aligned to the audio where the user can click on
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individual staffs corresponding to the left or the right hand of a piano piece. The system
then separates or enhances the corresponding group of notes in real-time.

In a second use case, we investigate how score-informed source separation techniques can
be employed in music analysis tasks. This is in contrast to most previous methods, which
usually have the goal to create audible separation results. In particular, given a MIDI file
and an audio recording for a piece of music, we employ the techniques developed in the
following to analyze how intense or how loud each MIDI note event occurs in the audio
recording. In this way, a comparison of dynamics across different interpretations of a piece
is no longer limited to the measure- or the chord-level, but can even be performed on the
basis of single notes. Furthermore, extracting such performance-specific subtleties allows
for enriching a given score-like MIDI representation.

9.1 Parametric Model

To describe an audio recording of a piece of music using a parametric model, one has to con-
sider many musical and acoustical aspects [72,78]. For example, parameters are required
to encode the pitch as well as the onset position and duration of note events. Further
parameters might encode tuning aspects, the timbre of specific instruments, or amplitude
progressions. In this section, we describe our model and show how its parameters can be
estimated by an iterative method.

Let X ∈ C
K×N denote the spectrogram and Y = |X| the magnitude spectrogram of

a given music recording. Furthermore, let S := {µs | s ∈ [1 :S]} denote a set of note
events as specified by a MIDI file representing a musical score. Here, each note event is
modeled as a triple µs = (ps, ts, ds), with ps encoding the MIDI pitch, ts the onset position
and ds the duration of the note event. Our strategy is to approximate Y by means of a
model spectrogram Y S

λ , where λ denotes a set of free parameters representing acoustical
properties of the note events. Based on the note event set S, the model spectrogram Y S

λ

will be constructed as a superposition of note-event spectrograms Y s
λ , s ∈ [1 :S]. More

precisely, we define Y S
λ at frequency bin k ∈ [1 :K] and time frame n ∈ [1 :N ] as

Y S
λ (k, n) :=

∑

µs∈S

Y s
λ (k, n), (9.1)

where each Y s
λ denotes the part of Y S

λ that is attributed to µs. Each Y s
λ consists of a

component describing the amplitude or activity over time and a component describing the
spectral envelope of a note event. More precisely, we define

Y s
λ (k, n) := αs(n) · ϕτ,γ(ωk, ps), (9.2)

where ωk denotes the frequency in Hertz associated with the k-th frequency bin. Further-
more, αs ∈ R

N
≥0 encodes the activity of the s-th note event. Here, we set αs(n) := 0, if

the time position associated with frame n lies in R \ [ts, ts + ds]. The spectral envelope
associated with a note event is described using a function ϕτ,γ : R× [1 : P ]→ R≥0, where
[1 :P ] with P =127 denotes the set of MIDI pitches. More precisely, to describe the fre-
quency and energy distribution related to a specific note event with MIDI pitch p ∈ [1 :P ],



9.1. PARAMETRIC MODEL 107

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

ϕ
1 τ
,γ

1
(ω

,p
)

Frequency in Hz

ℓ=1 ℓ=2 ℓ=3 ℓ=4 ℓ=5 ℓ=6 ℓ=7 ℓ=8 ℓ=9

γ1

γ2

γ3

γ4
γ5

γ6 γ7 γ8 γ9

Figure 9.1. Illustration of the spectral envelope function ϕ1

τ,γ1(ω, p) for p = 60 (middle C), τ = 0

and some example values for the parameter γ1.

the function ϕτ,γ depends on a parameter τ ∈ [−0.5, 0.5]P related to the tuning and a
parameter γ related to the energy distribution over the first L partials. In the following,
we consider two different spectral envelope models and corresponding functions ϕ. Given
a frequency ω in Hertz and γ1 ∈ [0, 1]L, we define the envelope function for the first model

ϕ1
τ,γ1(ω, p) :=

∑

ℓ∈[1:L]

γ1ℓ · κ(ω − ℓ · f(p+ τp)), (9.3)

where the function κ : R → R≥0 is a suitably chosen Gaussian centered at zero, which is
used to describe the shape of a partial in frequency direction, see Figure 9.1. Furthermore,
f : R → R≥0 defined by f(p) := 2(p−69)/12 · 440 maps the pitch to the frequency scale.
To account for non-standard tunings, we use the parameter τp to shift the fundamental
frequency upwards or downwards by up to half a semitone. The spectral envelope function
for the second model is defined as

ϕ2
τ,γ2(ω, p) :=

∑

ℓ∈[1:L]

γ2ℓ,p · κ(ω − ℓ · f(p+ τp)), (9.4)

where γ2 ∈ [0, 1]L×P .

These two models differ significantly in the way they describe the spectral envelope as-
sociated with a note event. In the first model, one assumes that the overtone energy
distribution is independent of the pitch (parameter γ1 does not depend on p). So the
energy distribution, for example, for a middle C is assumed to be the same as for a middle
E. The second model implements exactly the opposite idea assuming that the partials’
energy distribution strongly depends on the pitch. Therefore, the parameter γ2 has a de-
pendency on p. Both models have advantages and disadvantages. On the one hand, using
an individual description of the energy distribution for each pitch as in the second model
allows for a fine grained representation of the spectral envelope. On the other hand, the
parameter estimation process might not be robust in some cases, for example, for pitches
with many overlapped partials. Consider for example a recording of a sequence of C-major
chords. Here, the second and the fourth overtone of the C overlap with overtones belong-
ing to the E and the G. For these overtones, the second model cannot resolve how much
energy belongs to each of the three pitches, because they always occur together. The first
model, however, assumes that the overtone energy distribution is the same for all three
pitches. Here, one can exploit that the second and fourth overtone of the E and the second
overtone of the G are not overlapped by any other overtones. This way, information about
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Figure 9.2. Illustration of the first iteration of the parameter estimation procedure using the
first measure of Chopin’s Prélude ”Raindrop” (Op. 28 No. 15). (a) Score for the first measure. (b)
Audio spectrogram Y to be approximated. (c)-(f) Model spectrogram Yλ after certain parameters
are estimated. (c) Parameter S is initialized with MIDI note events. (d) Note events in S are
synchronized with the audio recording. (e) Activity α and tuning parameter τ are estimated. (f)
Partials’ energy distribution parameter γ is estimated.

the spectral envelope of the E and the G can be used transitively to resolve overlapped
partials of the C.

Altogether, λ := (α, τ, γ) denotes the set of free parameters with α := {αs | s ∈ [1 : S]}
and γ := γ1 for the first spectral envelope model and γ := γ2 for the second. Note, that
the number of free parameters is kept low by sharing the parameters τ and γ across the
individual note events given by S. Here, a low number allows for an efficient parameter
estimation process as described below and additionally prevents model over-fitting.

Now, finding a meaningful parameterization of Y can be formulated as the following
optimization task:

λ∗ = argmin
λ
‖Y − Y S

λ ‖F , (9.5)

where ‖·‖F denotes the Frobenius norm. In the following, we illustrate the individual steps
in our parameter estimation procedure in Figure 9.2 using an audio recording of Chopin’s
Prélude ”Raindrop” (Op. 28 No. 15) taken from the SMD database [124]. Here, the given
audio spectrogram (Figure 9.2b) is gradually approximated by our model (Figure 9.2c-
9.2f).
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9.1.1 Initialization and Adaption of Note Timing Parameters

To initialize our model, we exploit the available MIDI information represented by S. For
the s-th note event µs = (ps, ts, ds), we set αs(n) := 1 if the time position associated with
frame n lies in [ts, ts + ds] and αs(n) := 0 otherwise. Furthermore, we set τp := 0, γ11 :=
γ21,p := 1 and γ1ℓ := γ2ℓ,p := 0 for p ∈ [1 : P ], ℓ ∈ [2 : L]. An example model spectrogram

Y S
λ using spectral envelope model ϕ2 after the initialization is given in Figure 9.2c.

Next, we need to adapt and refine the model parameters to approximate the given audio
spectrogram as accurately as possible. This parameter adaption is simplified when the
MIDI file is assumed to be perfectly aligned to the audio recording as in [78]. However,
in most practical scenarios such a MIDI file is not available. Therefore, in our approach,
we employ the high resolution music synchronization approach as described in Chapter 7.
Using the resulting alignment, we determine for each note event the corresponding position
in the audio recording and update the onset positions and durations in S accordingly.
After the synchronization, the note event set S remains unchanged during all further
parameter estimation steps. Figure 9.2d shows an example model spectrogram after the
synchronization step.

9.1.2 Estimation of Model Parameters

To estimate the parameters in λ, we look for (α, τ, γ) that minimize the function d(α, τ, γ) :=
‖Y − Y S

(α,τ,γ)‖F , thus minimizing the distance between the audio and the model spectro-
gram. Additionally, we need to consider range constraints for the parameters. For example,
τ is required to be an element of [−0.5, 0.5]P . To approximately solve this constraint op-
timization problem, we employ a variant of the trust region based interior points method
described in [11]. To this end, we fix two parameters and minimize d regarding the
third. For example, to get a better estimate for α, we fix τ and γ and minimize g(·, τ, γ).
This process is repeated until all three parameters converge. Figure 9.2e and f illustrate
the first iteration of our parameter estimation. Here, Figure 9.2e shows the spectrogram
described by our model after the estimation of the tuning parameter τ and the activity
parameter α. Figure 9.2f shows the spectrogram model after the estimation of the energy
distribution parameter γ2. Here, one can observe that our model focuses on the harmonic
parts of a spectrogram while mainly ignoring the noisy percussive elements.

The main ideas behind [11] can be summarized as follows. Let h : Rd → R be a function
to be minimized and x ∈ R

d. Then the method computes the first and second derivative
of h at position x and derives a quadratic approximation of h using the Taylor series. The
Taylor approximation of h is assumed to be meaningful only in a neighborhood of x, the
so called trust region. Instead of minimizing h, the method then minimizes the Taylor
approximation within the trust region yielding a new value x∗. If h(x∗) > h(x), then the
trust region was too large and the approximation of h was insufficient. In this case, the
trust region is decreased and the process is repeated for x. If h(x∗) ≤ h(x), then x is set
to x∗ and the process is repeated until x converges. Possible parameter range constraints
are considered in [11] by a barrier approach. Here, the basic idea is to reformulate the
function h by including penalty terms that get increasingly large when the value for a
parameter is invalid.
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Figure 9.3. Score-informed voice separation: (a) Decomposition of a piano recording into two
sound sources corresponding to the left and right hand as specified by a musical score. Shown are
the first four measures of Chopin’s Prélude ”Raindrop” (Op. 28 No. 15). (b) Prototypical imple-
mentation of a voice equalizer based on the multimodal music player proposed in [22]. By selecting
a staff/hand in the scanned score image the corresponding group of notes is separated/enhanced
in real-time.

9.2 Application: Voice Equalizer

In this section, we employ the parametric model presented in Section 9.1 to develop an
automated method for the decomposition of a monaural piano recording into sound sources
corresponding to the left and the right hand as specified by a score, see Figure 9.3a. Played
on the same instrument and often being interleaved, the two sources share in this case
many spectral properties. As a consequence, classical source separation techniques that
rely on statistical differences between the sound sources are not directly applicable. To
make the separation process feasible, we exploit the fact that a musical score is available for
many pieces and use our score-informed parametric model to approximate the spectrogram
of the given piano recording. Characterizing which parts of the spectrogram belong to a
given note event, the model is then employed to decompose the spectrogram into parts
related to the left hand and to the right hand. While we restrict the task in this section to
the left/right hand scenario, the proposed method is sufficiently general to isolate any kind
of voice (or group of notes). In particular, a note group might correspond to a melody, a
motif, an accompaniment track, or any other set of notes as specified by the user or by
some labeling of the score.

As an application, the goal is to extend the idea of an instrument equalizer as presented in
[78] and discussed in Chapter 8 to a generally applicable voice equalizer. Here, rather than
being limited to emphasizing some instrument tracks the user can more freely decide which
musical elements he or she wants to highlight and to focus on. Integrating these ideas into
the multimodal music player proposed in [22] we demonstrate that such a voice equalizer
can be used in an intuitive and user-friendly way. In its original form the player highlights
during audio playback the corresponding position in the score. Integrating the proposed
system, the player was extended such that by selecting a staff in the scanned score image
the corresponding group of notes is separated or enhanced in real-time, see Figure 9.3b.
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This way, a listener can easily select and focus on specific musically meaningful elements
of a piece, which might be hard to recognize in a regular audio recording. In the following
sections, we now describe the techniques underlying the proposed voice equalizer. Using
the left-right hand scenario as an example, we describe in Section 9.2.1 how our parametric
model can be employed to extract arbitrary note groups from a given audio recording.
In Section 9.2.2, we then indicate the separation quality of this approach in systematic
experiments.

9.2.1 Separation Process

Given a MIDI file and an audio recording for a piece of music, we first estimate param-
eters λ such that the model spectrogram Y S

λ approximates the original spectrogram Y
as precisely as allowed by the model. To this end, we first initialize our model with the
note events provided by the MIDI file and adapt the model parameters iteratively as de-
scribed in Section 9.1. In a next step, we employ information derived from the model to
decompose the original audio spectrogram into separate channels or voices. To this end,
we exploit that Y S

λ is a compound of note-event spectrograms Y s
λ . With T ⊂ S, we define

Y T
λ as

Y T
λ (k, n) :=

∑

µs∈T

Y s
λ (k, n). (9.6)

Then Y T
λ approximates the part of Y that can be attributed to the note events in T .

One way to obtain an audible separation result could be to apply a spectrogram inversion
directly to Y T

λ . However, to yield an overall robust approximation result the proposed
model does not attempt to capture every possible spectral nuance in Y . Therefore, an
audio recording deduced directly from Y T

λ would miss these nuances and would conse-
quently sound rather unnatural. Instead, we revert to the original spectrogram again and
use Y T

λ only to extract suitable parts of Y . To this end, we derive a separation mask
MT ∈ [0, 1]K×N from the model which encodes how strongly each entry in Y should be
attributed to T . More precisely, we define

MT :=
Y T
λ

Y S
λ + ε

, (9.7)

where the division is understood entry-wise. The small constant ε > 0 is used to avoid a
potential division by zero. Furthermore, ε prevents that relatively small values in Y T

λ lead
to large masking values, which would not be justified by the model. For our experiments,
we set ε = 10−2.

For the separation, we apply MT to a magnitude spectrogram via

Ŷ T := MT ◦ Y, (9.8)

where ◦ denotes entry-wise multiplication (Hadamard product). The resulting Ŷ T is
referred to as estimated magnitude spectrogram. Here, using a mask for the separation
allows for preserving most spectral nuances of the original audio. In a final step, we apply
a spectrogram inversion to yield an audible separation result. Here, a commonly used
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Figure 9.4. Illustration of our voice separation process continuing the example shown in Fig-
ure 9.3a. (a) Model spectrogram Y S

λ after the parameter estimation. (b) Derived model spec-
trograms Y L

λ and Y R
λ corresponding to the notes of the left and the right hand. (c) Separation

masks ML and MR. (d) Estimated magnitude spectrograms Ŷ L and Ŷ R. (e) Reconstructed
audio signals x̂L and x̂R.

approach is to combine Ŷ T with the phase information of the original spectrogram X
in a first step. Then, an inverse FFT in combination with an overlap-add technique is
applied to the resulting spectrogram [72]. However, this can lead to clicking and ringing
artifacts in the resulting audio recording. Therefore, we apply a spectrogram inversion
approach originally proposed by Griffin and Lim in [67]. The method attenuates the
inversion artifacts by iteratively modifying the original phase information. The resulting
x̂T constitutes our final separation result referred to as reconstructed audio signal (relative
to T ).

Next, we transfer these techniques to our left/right hand scenario. Each step of the
full separation process is illustrated by Figure 9.4. First, we assume that the score is
partitioned into S = L ∪̇R, where L corresponds to the note events of the left hand and R
to the note events of the right hand. Starting with the model spectrogram Y S

λ (Figure 9.4a)
we derive the model spectrograms Y L

λ and Y R
λ using Eqn. (9.6) (Figure 9.4b) and then the

two masks ML and MR using Eqn. (9.7) (Figure 9.4c). Applying the two masks to the
original audio spectrogram Y , we obtain the estimated magnitude spectrograms Ŷ L and
Ŷ R (Figure 9.4d). Finally, applying the Griffin-Lim based spectrogram inversion yields
the reconstructed audio signals x̂L and x̂R (Figure 9.4e).

9.2.2 Experiments

This section describes systematically conducted experiments to illustrate the potential of
the proposed method. For the evaluation, we use a database consisting of seven repre-
sentative pieces from the Western classical music repertoire, see Table 9.1. Using only
freely available audio and score data allows for a straightforward replication of the fol-
lowing experiments. In particular, the database contains uninterpreted score-like MIDI
files from the Mutopia Project1(MUT), high-quality audio recordings from the Saarland

1http://www.mutopiaproject.org

http://www.mutopiaproject.org
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Composer Piece MIDI Audio 1 Audio 2 Identifier

Bach BWV875-01 MUT Synthetic SMD Bach875

Beethoven Op031No2-01 MUT Synthetic SMD Beet31No2

Beethoven Op111-01 MUT Synthetic EA BeetOp111

Chopin Op028-01 MUT Synthetic SMD Chop28− 01

Chopin Op028-04 MUT Synthetic SMD Chop28− 04

Chopin Op028-15 MUT Synthetic SMD Chop28− 15

Chopin Op064No1 MUT Synthetic EA Chop64No1

Chopin Op066 MUT Synthetic SMD Chop66

Table 9.1. Pieces and audio recordings (with identifier) used in our experiments.

Identifier SNR SNR SNR SNR SNR SNR
(Y L,Ŷ L) (Y R,Ŷ R) (Y L,Ŷ L) (Y R,Ŷ R) (Y L,Y ) (Y R,Y )

pre-aligned distorted

Bach875 11.24 12.97 11.17 12.89 -1.99 3.03
Beet31No2 12.65 10.38 12.47 10.23 1.24 -0.09
BeetOp111 13.21 12.26 12.92 11.99 0.16 0.97
Chop28-01 10.52 13.96 10.43 13.84 -3.38 4.48
Chop28-04 17.63 10.48 17.58 10.45 8.65 -7.55
Chop28-15 17.79 13.35 17.56 13.18 3.48 -2.47
Chop64No1 12.93 11.86 12.60 11.55 -0.06 1.31
Chop66 11.61 11.17 11.46 11.03 -0.41 2.01
Average 13.45 12.05 13.27 11.90 0.96 0.21

Table 9.2. Experimental results using ground truth data consisting of synthesized versions of
the pieces in our database. For these experiments the spectral envelope model ϕ2 was employed.

Music Database2(SMD) as well as digitized versions of historical gramophone and vinyl
recordings from the European Archive3(EA).

In a first step, we indicate the quality of proposed method quantitatively using synthetic
audio data. To this end, we use the Mutopia MIDI files to create two additional MIDI files
for each piece using only the notes of the left and the right hand, respectively. Using a
wave table synthesizer, we can then generate audio recordings from these MIDI files which
are used as ground truth separation results in the following experiment. We denote the
corresponding magnitude spectrograms by Y L and Y R, respectively. For our evaluation we
use a quality measure based on the signal-to-noise ratio (SNR)4. More precisely, to compare
a reference magnitude spectrogram YR ∈ R

K×N
≥0 to an approximation YA ∈ R

K×N
≥0 we define

SNR(YR, YA) := 10 · log10

∑
k,n YR(k, n)

2

∑
k,n (YR(k, n)− YA(k, n))2

.

The second and third column of Table 9.2 show SNR values for all pieces using the spectral
envelope model ϕ2. Here, the ground truth is compared to the estimated spectrogram for
the left and the right hand. For example, the left hand SNR for Chop28− 15 is 17.79
whereas the right hand SNR is 13.35. The reason the SNR being higher for the left hand

2http://www.mpi-inf.mpg.de/resources/SMD/
3http://www.europarchive.org
4Even though SNR values are often not perceptually meaningful, they at least give some tendencies on

the quality of separation results.

http://www.mpi-inf.mpg.de/resources/SMD/
http://www.europarchive.org
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than for the right hand is that the left hand is already dominating the mixture in terms of
overall loudness. Therefore, the left hand segregation is per se easier compared the right
hand segregation. To indicate which hand is dominating in a recording, we additionally
give SNR values comparing the ground truth magnitude spectrograms Y L and Y R to the
mixture magnitude spectrogram Y , see column six and seven of Table 9.2. For example for
Chop28− 15, SNR(Y L, Y )= 3.48 is much higher compared to SNR(Y R, Y )=−2.47 thus
revealing the left hand dominance.

Using synthetic data, the audio recordings are already perfectly aligned to the MIDI files.
To further evaluate the influence of the music synchronization step, we randomly distort
the MIDI files by splitting them into 20 segments of equal length and by stretching or
compressing each segment by a random factor within an allowed distortion range (in our
experiments we used a range of ±50%). The results for these distorted MIDI files are given
in column four and five of Table 9.2. Here, the left hand SNR for Chop28− 15 decreases
only moderately from 17.79 (pre-aligned MIDI) to 17.56 (distorted MIDI), and from 13.35
to 13.18 for the right hand. Similarly, the average SNR also decreases moderately from
13.45 to 13.27 for the left hand and from 12.05 to 11.90 for the right hand, which indi-
cates that our synchronization works robustly in these cases. The situation in real world
scenarios becomes more difficult, since here the note events of the given MIDI may not
correspond one-to-one to the played note events of a specific recording. An example will
be discussed in the next paragraph, see also Figure 9.5.

As mentioned before, signal-to-noise ratios and similar measures cannot capture the per-
ceptual separation quality. Therefore, to give a realistic and perceptually meaningful
impression of the separation quality, a website5 is provided with audible separation results
as well as visualizations illustrating the intermediate steps in the proposed procedure.
Here, only real, non-synthetic audio recordings from the SMD and EA databases were
used to illustrate the performance of the proposed method in real world scenarios. Lis-
tening to these examples does not only allow to quickly get an intuition of the method’s
properties but also to efficiently locate and analyze local artifacts and separation errors.
For example, Figure 9.5 illustrates the separation process for BeetOp111 using an inter-
pretation by Egon Petri (European Archive). As a historical recording, the spectrogram
of this recording (Figure 9.5c) is rather noisy and reveals some artifacts typical for vinyl
recordings such as rumbling and cranking glitches. Despite these artifacts, the proposed
model approximates the audio spectrogram well (w.r.t. to the euclidean norm) in most
areas (Figure 9.5d). Also the resulting separation results are plausible, with one local
exception. Listening to the separation results reveals that the trills towards the end of
the first measure were assigned to the left instead of the right hand. Investigating the
underlying reasons shows that the trills are not correctly reflected by the given MIDI file
(Figure 9.5b). As a consequence, our score-informed approach cannot model this spec-
trogram area correctly as can be observed in the marked areas in Figures 9.5c and 9.5d.
Applying the resulting separation mask (Figure 9.5e) to the original spectrogram leads to
the trills being misassigned to the left hand in the estimated magnitude spectrogram as
shown in Figure 9.5f.

Overall, we presented in this section a novel method for the decomposition of a monaural
audio recording into musically meaningful voices. Here, the goal was to extend the idea

5http://www.mpi-inf.mpg.de/resources/MIR/2011-ISMIR-VoiceSeparation/

http://www.mpi-inf.mpg.de/resources/MIR/2011-ISMIR-VoiceSeparation/
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Figure 9.5. Illustration of the separation process for BeetOp111. (a) Score corresponding
to the first two measures. (b) MIDI representation (Mutopia Project). (c) Spectrogram of an
interpretation by Petri (European Archive). (d) Model spectrogram after parameter estimation.
(e) Separation mask ML. (f) Estimated magnitude spectrogram Ŷ L. The area corresponding to
the fundamental frequency of the trills in measure one is indicated using a green rectangle.
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of an instrument equalizer to a voice equalizer which does not rely on statistical proper-
ties of the sound sources and which is able to emphasize or attenuate even single notes
played by the same instrument. Instead of relying on pre-aligned MIDI files, the proposed
score-informed procedure directly addresses alignment issues using high-resolution music
synchronization techniques thus allowing for an adoption in real world scenarios. Initial
experiments showed good results using synthetic as well as real audio recordings. In the
future, it would be interesting to extend this approach with an onset model while avoiding
the drawbacks discussed in [78], see also Chapter 8.

9.3 Application: Note Intensity Estimation

The score of a piece of music basically specifies note parameters such as the pitch, the
onset position and the duration. Musical nuances beyond the score are subject to the
interpretation by a musician. For example, timings and dynamics (intensities) are not
taken as fixed constants and offer a musician the artistic freedom to form a piece of music
in his or her own way. Also parameters referring to the timbre are often strongly influenced
by the musician. Capturing these musical nuances is important for many different fields
in music signal processing. For example, it allows for an automated analysis of differences
between several interpretations of a piece of music, as done in the field of performance
analysis [160,191]. A compact description of the nuances might also lead to more efficient
compression approaches or to higher quality in applications of source separation.

To further demonstrate the potential of the proposed parametric model, we focus in this
section on the estimation of note intensities in recordings of polyphonic piano music. In
particular, given a MIDI file (representing the score) and an audio recording (representing
an interpretation) of a piece of music, the idea is to parameterize the spectrogram of the
audio recording using the proposed model in a first step. Then, we exploit that the model
is based on note-event spectrograms each describing the part of a spectrogram that can be
attributed to a specific note event. This way, we can derive the individual note intensities
by analyzing the note-event spectrograms described by the model. A visual representation
of these intensity values (Figure 9.6) provides support for a subsequent analysis of the
music material. For example, such a visualization allows a user to identify and analyze
dynamics-related differences between several interpretations of a piece on a note-level.
Furthermore, describing musical properties beyond the score, the intensity values can be
used to enrich a given MIDI representation with performance-specific subtleties. Overall,
the presented approach demonstrates that score-informed source separation techniques
can also be employed for analysis purposes and are useful beyond the goal of creating
appealing separation results.

After describing how the proposed parametric model can be employed for estimating note
intensities, we discuss some systematic experiments conducted on a database of piano
recordings. However, because of a lack of annotated ground truth data, evaluating the
quality of estimated note intensities is a challenging task itself. In the following experi-
ments, we use audio recordings obtained by a Yamaha Disklavier. Equipped with optical
sensors and electromechanical devices, such pianos allow for recording the key movements
along with the acoustic audio data. On the one hand, the key movement data can be used
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Figure 9.6. Illustration of our note intensity estimation procedure using three measures of
Burgmüller, Op. 100, Etude No. 2 as an example. The color encodes the note intensity. Left:
Note events taken from a MIDI generated from score data. The note intensities are constant for
all notes. Right: Note events derived from our model approximating an audio recording.

to derive expected note intensities as described below. On the other hand, we can use the
proposed procedure to estimate the note intensities using the audio data. Comparing the
expected with the estimated note intensities allows for a first assessment of the estimation
quality using real-world data.

9.3.1 Note Intensity Estimation

Again, given a MIDI file and a corresponding audio recording for a piece of music, we start
by estimating parameter values, such that the audio spectrogram Y is approximated by
Y S
λ as precisely as allowed by the model. In particular, the model describes the note-event

spectrograms Y s
λ , which can be used to derive an intensity value for each note event as

follows. The energy related to the s-th note event in frame n is given by

Es(n) :=
∑

k∈[1:K]

Y s
λ (k, n)

2.

To describe the intensity of a note event by a single value, we define

I(s) := max
n∈[1:N ]

Es(n)
0.3.

Here, the exponent 0.3 is used so that the note intensity roughly approximates the per-
ceived loudness of the human auditory system [50, chapter 8]. The result of our method
is illustrated in Figure 9.6. Here, the left half of Figure 9.6 shows note events from a
MIDI file generated from score data. The note intensities are constant for all note events.
The right half shows the result of our procedure, where note timings and intensities are
estimated from an audio recording.
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9.3.2 Experiments

For our evaluation, we employ a database consisting of Disklavier recordings of vari-
ous pieces from the Western classical music repertoire6. For each audio recording, the
Disklavier automatically generates a MIDI file, which can be regarded as a kind of ground
truth annotation. For example, the MIDI onset-positions and durations correspond closely
to those in the audio recordings. Particularly interesting for our evaluation are the veloc-
ity values, which symbolically encode the dynamics in a MIDI file. Here, a translation of
the symbolic velocity values to physical note intensities would allow for a simple way to
evaluate our method. However, this translation is not trivial for polyphonic music because
of the complex interaction of multiple sound sources and other acoustical effects. To ap-
proximate such a translation, a dictionary was built up that maps a pitch and a velocity
to a physical note intensity. In a first step, training data was used consisting of single
note events played at several velocities. In a second step, the dictionary was refined using
five pieces from our database. These pieces are marked with a star in the result table.
Initial experiments using monophonic recordings revealed that the dictionary is capable
of estimating the note intensity with an accuracy of about five to ten percent.

Given a piece from our database, we can use the dictionary in combination with the pre-
aligned annotation MIDI file to estimate the intensity for each note event. We denote
the resulting values by (Idic(s))s∈[1:S], where [1 : S] denotes the index set for the note
events. Then, ignoring the given velocity values, we use the proposed method to estimate
the individual note intensities using the MIDI and the audio data. The resulting values
are denoted by (I(s))s∈[1:S]. To compensate for different overall recording levels, we only
consider relative note intensities in our evaluation. To this end, we normalize the S-
dimensional vectors Idic and I with regard to the Euclidean norm and compare them in
terms of a percentage error defined by

PE :=

(
100 ·

∣∣∣∣∣
Ĩ(s)− Ĩdic(s)

Ĩdic(s)

∣∣∣∣∣

)

s∈[1:S]

where Ĩ and Ĩdic denote the normalized versions of I and Idic, respectively. Using the
spectral envelope model ϕ1, the mean and standard deviation of PE are given in the third
and fourth column of Table 9.3. For example, for Bach’s BWV849-02 one gets a mean
percentage error of 9.3 with a standard deviation of 5.5. The average over all pieces is 16.9
with a standard deviation of 9.3. With an intrinsic error of five to ten percent induced by
the estimated dictionary, this indicates a reasonable estimation quality.

To further evaluate the influence of the music synchronization step, we randomly distort
the pre-aligned MIDI files by splitting them into 20 segments of equal length and by
stretching or compressing each segment by a random factor within an allowed distortion
range (in the experiments we use a range of ±50%). The results are shown in the fifth and
sixth column of Table 9.3. Here, the average error for Bach’s BWV849-02 increases only
moderately from 9.3 (pre-aligned MIDI) to 9.5 (distorted MIDI). Similarly, the average
error also increases moderately from 16.9 to 17.2, which indicates that our synchronization
works robustly in most cases.

6All files are part of the SMD database [124], which can be obtained from the website http://www.

mpi-inf.mpg.de/resources/SMD/.

http://www.mpi-inf.mpg.de/resources/SMD/
http://www.mpi-inf.mpg.de/resources/SMD/


9.3. APPLICATION: NOTE INTENSITY ESTIMATION 119

Composer Piece Proposed Proposed Baseline Baseline
pre-aligned distorted pre-aligned distorted
Mean STD Mean STD Mean STD Mean STD

Bach BWV849-01* 9.3 5.3 9.5 5.5 31.5 25.9 31.9 26.5
Bach BWV849-02 9.3 5.5 9.5 5.7 28.7 23.9 29.3 24.5
Bach BWV871-01 11.0 6.2 11.4 6.3 27.5 21.4 28.2 21.7
Bach BWV871-02 7.7 5.1 7.8 5.2 24.6 20.0 25.0 20.3
Bach BWV875-01 13.9 6.7 14.1 6.9 31.6 26.2 32.0 26.8
Bach BWV875-02 8.3 4.9 8.5 5.0 28.2 25.4 28.8 26.1
Beethoven Op027No1-01 12.5 7.1 13.0 7.2 39.4 28.0 40.5 28.6
Beethoven Op027No1-02* 10.3 6.5 10.6 6.7 35.2 24.4 35.9 24.7
Beethoven Op027No1-03 13.6 7.3 14.0 7.5 45.6 32.0 46.6 33.3
Beethoven Op031No2-01 16.1 8.7 16.5 8.9 36.1 29.9 36.9 30.4
Beethoven Op031No2-02 27.2 14.5 27.8 14.7 38.6 27.5 39.2 27.8
Beethoven Op031No2-03 13.2 8.1 13.5 8.2 34.9 29.4 35.4 30.1
Brahms Op010No1* 13.8 7.3 14.0 7.5 38.9 29.3 39.4 29.8
Brahms Op010No2 13.6 7.9 14.2 8.0 41.3 32.6 42.5 33.8
Chopin Op010-03 25.2 13.0 25.4 13.2 35.1 31.0 35.5 32.2
Chopin Op010-04 25.0 13.2 25.8 13.6 36.0 34.2 36.9 35.1
Chopin Op026No1 22.6 13.2 22.9 13.5 34.1 34.8 34.5 35.2
Chopin Op026No2 23.6 14.2 23.8 14.6 34.7 33.2 35.0 33.8
Chopin Op028-01 22.9 11.4 23.6 11.9 37.7 25.8 38.6 26.7
Chopin Op028-03 19.0 12.2 19.3 12.6 33.4 36.8 33.9 38.0
Chopin Op028-04 19.5 11.6 20.2 12.0 29.6 29.2 30.4 30.3
Chopin Op028-11 18.8 9.1 19.0 9.3 25.6 23.3 25.9 23.5
Chopin Op028-15 18.0 9.2 18.7 9.4 24.7 19.3 25.4 19.5
Chopin Op028-17 22.1 10.7 22.9 11.0 31.1 24.9 32.0 25.4
Chopin Op029* 20.1 11.6 20.8 11.9 32.7 34.9 33.6 35.9
Chopin Op048No1 26.0 11.2 26.2 11.3 39.0 34.0 39.4 35.3
Chopin Op066 22.4 13.5 22.7 13.8 31.0 37.3 31.4 38.6
Haydn Hob017No4* 14.8 8.1 15.4 8.3 44.5 32.7 45.8 33.4
Rachman. Op039No1 15.5 9.0 16.0 9.2 36.6 28.0 37.6 28.6
Skryabin Op008No8 10.1 5.6 10.4 5.8 24.5 21.5 25.1 21.8
Average 16.9 9.3 17.2 9.5 33.8 28.6 34.4 29.3

Table 9.3. Estimation quality of our proposed method (using spectral envelope model ϕ1) and
a baseline. Shown are the mean and standard deviation of the percentage errors PE and PEbase.
The results for using pre-aligned and temporally distorted MIDI files are listed separately. The
stars indicate pieces, that have been used to refine our note intensity dictionary.

To get a better understanding of these numbers, we next conduct a simple baseline ex-
periment. Our baseline method starts by computing the magnitude spectrogram for a
given audio recording. Then, exploiting the onset, duration and pitch information given
by a synchronized MIDI file, the method locates the spectrogram bins that are related to
the first five partials of a given note event. To locate the partials correctly, we incorpo-
rate simple heuristics to estimate the fundamental frequency for each pitch. Using only
the located bins, the baseline method then computes the energy in each time frame and
derives a note intensity from the maximum of these energy values. In some sense, this
method roughly represents what is possible without using a sophisticated overtone model.
We denote the resulting intensity values by (Ibase(s))s∈[1:S]. After normalizing Ibase, we
compare Ibase and Idic in terms of a percentage error PEbase as described above. The
results of our baseline experiments using both pre-aligned and distorted Disklavier MIDI
files are shown in columns seven and eight as well as nine and ten of Table 9.3, respectively.
Using pre-aligned MIDI files, the error for Bach’s BWV849-02 is 28.7, which is over three
times higher compared to an error of 9.3 for the proposed method. Furthermore, the
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average error when using the baseline method is with 33.8 twice as high as the error when
using the proposed method. Overall, the baseline experiments indicate that the proposed
method indeed yields note intensities with a reasonable estimation quality.

Overall, we have discussed in this section a first method for the estimation of note inten-
sities in music recordings. While such an estimation is a very challenging task in general,
experiments on polyphonic piano music revealed measurable advantages of the proposed
method over a given baseline. However, for the future there are still several challenges
to be solved. For example, the definition of a suitable ground truth for note intensities
is an open problem. Here, one has to consider complex acoustical effects which strongly
depend on the recording conditions. In particular, the room acoustics and the interaction
of multiple sound sources with the resonance body of an instrument are important factors.
However, this cannot be achieved with a simple dictionary based ground truth. A better
ground truth is also a requirement for a more detailed analysis of the capabilities and
limitations of the proposed procedure, and the underlying model in particular. A first
manual inspection already revealed that the procedure tends to incorrectly model note
events with very low pitches. Here, other spectral representations or multi-resolution spec-
trograms should be considered that offer a higher frequency resolution for lower pitches.
Furthermore, the procedure could be improved by incorporating perceptually oriented
methods to assess the intensity or loudness of a note event [50, 115].



Chapter 10

Score-Informed Non-Negative

Matrix Factorization

In recent years, methods for separating musically meaningful sound sources from monaural
music recordings have been applied to many music processing tasks. For example, tech-
niques to extract individual instrument tracks have been incorporated into approaches for
instrument recognition [72] or instrument-wise equalization [78]. A lot of these techniques
rely on some variant of non-negative matrix factorization (NMF) [98], or on an equivalent
formulation such as probabilistic latent component analysis (PLCA) [167]. Here, the idea
is to decompose the magnitude spectrogram of a given recording into a set of template
(column) vectors and activation (row) vectors. However, as discussed in more detail be-
low, template vectors learnt by NMF-based approaches are often hard to interpret and
lack explicit semantics. To obtain musically meaningful vectors, the original NMF can
be modified such that each template vector is associated with a single musical pitch. To
this end, many approaches specify the template vectors using a parametric model. For
example, the template vectors in [72] are described by a source/filter model, in [73] by
harmonic atoms, in [180] by comb filtered spectral vectors, and in [78, 196] by spectrally
and/or temporally localized Gaussians. Also the approach described in Chapter 9 can be
interpreted in this way. On the one hand, a parametric model allows for a straightforward
integration of musical knowledge. For example, in [196] the authors extend their harmony-
based approach with a percussive component exploiting the typical spectral shape around
onsets. Furthermore, allowing only solutions that are valid within the model, the para-
metric approaches offer a high degree of robustness. On the other hand, the parameter
estimation and the resulting spectrogram approximation can be inaccurate in the case that
some model assumptions are violated. Additionally, the parameter estimation process is
often computationally expensive.

In this chapter, we discuss a novel method that combines the efficiency and flexibility of
classic NMF with advantages of parametric approaches. The method is based on a strategy
originally presented in [151]. Here, the underlying idea is to enforce a harmonic structure
for the template vectors by setting those entries to zero that are not in a neighborhood of an
expected partial. Then, using multiplicative update rules guarantees that these constraints
remain valid during the subsequent learning process. We extend this idea in several ways.
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First, opposed to previous methods, we simultaneously constrain the template vectors
as well as the activations. In this way, instead of just specifying what is expected we
additionally specify when something is expected. The use of these double constraints
becomes possible by exploiting available score information in form of a MIDI file. Here,
we again rely on the high-resolution synchronization techniques developed in Chapter 7
to align the MIDI file with a given recording. As a second extension, we exploit the
robustness gained by the double constraints to integrate template vectors that represent
percussive elements such as onsets. As experiments show, these double constraints in
combination with the onset template vectors stabilize the resulting separation results and
lead to an increased overall separation quality. Altogether, the proposed method combines
the expressive power of some parametric approaches with the efficiency of classic NMF,
while still being easy to implement.

The remainder of this chapter is organized as follows. In Section 10.1, we describe the
classical NMF framework and introduce the novel score-informed variant using double
constraints. In Section 10.2, we employ the proposed NMF model for the separation
of note groups (e. g. the left or right hand) from monaural piano recordings. Then, in
Section 10.3, we report on systematic experiments, where we compare the performance of
the proposed NMF model with the parametric model described in Chapter 9. Conclusions
and prospects on future work are given in Section 10.4. Further related work is discussed
in the respective sections.

10.1 Score-Informed Constraints in NMF

Non-negative matrix factorization (NMF) has turned out to be a powerful tool for model-
ing, analyzing and separating the constituent parts of polyphonic music recordings. NMF
variants form the basis of methods for pitch estimation [8,171], source separation [186], and
pattern and motive identification [188]. In this section, we show how the classical NMF
framework can be extended in a straightforward way using available score data. As we
will see, the basic idea is to replace the standard NMF initialization without changing the
established and computationally efficient NMF learning process. This way, a musically
meaningful factorization structure can be enforced, which stabilizes NMF-based source
separation.

10.1.1 Non-Negative Matrix Factorization

In classic non-negative matrix factorization, one approximates a spectral representation
of a given recording by a product of two non-negative matrices. More exactly, given a
magnitude spectrogram V ∈ RM×N

≥0 of a music recording, NMF seeks to find non-negative

matrices W ∈ RM×K
≥0 and H ∈ RK×N

≥0 such that V ≈ W · H, see Figure 10.1a. In this
context, the columns ofW are often referred to as template vectors and the rows ofH as the
corresponding activations. As an example, Figure 10.1b shows an example factorization
for a recording of Chopin’s Op. 28 No. 15. Here, the free parameter K is set to the number
of pitches that occur in the corresponding part of the piece. In this case, the activation
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Figure 10.1. Non-negative matrix factorization (NMF). (a) A given non-negative matrix V is
approximated as a product of two non-negative matrices W and H typically having a much smaller
rank. (b) Example factorization of a magnitude spectrogram for an audio recording of Chopin’s
Op. 28 No. 15 taken from the SMD database [124].

matrix H is similar to a pianoroll representation and shows when these pitches become
active.

In the classical approach for computing such a factorization, one employs some form of
gradient descent to minimize a distance measure D(V,W ·H) with respect to W and H,
where D is typically based on the Euclidean norm or a variant of the Kullback-Leibler
divergence, see [98]. However, to account for the non-negativity constraints for W and H,
one usually has to resort to rather complex optimization algorithms [135]. As an easy-
to-implement alternative, Lee and Seung proposed multiplicative update rules, which are
derived from gradient descent by choosing a specific step size [98]. Using the popular
Kullback-Leibler variant as a distance measure, these rules can be written as

Hkn ← Hkn

∑
iWikVin/(WH)in∑

j Wjk
and Wmk ←Wmk

∑
iHkiVmi/(WH)mi∑

j Hkj
,

where m ∈ [1 : M ], n ∈ [1 : N ], and k ∈ [1 : K]. For vectorized programming languages
such as Matlab it is useful to express these rules in matrix notation:

H ← H ◦
W⊤ · ( V

W ·H )

W⊤ · J
and W ←W ◦

( V
W ·H ) ·H⊤

J ·H⊤
,

where the · operator denotes the usual matrix product, the ◦ operator denotes the Hadamard
product (point-wise multiplication), J ∈ R

M×N denotes the all-one matrix, and the divi-
sion is understood point-wise. These multiplicative update rules have several interesting
properties. First, the Kullback-Leibler distance measure is non-increasing under these
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Figure 10.2. Classical NMF factorization for the magnitude spectrogram shown in Figure 10.1.
(a) Random initialization of W . (b) Random initialization of H. (c) Learnt W . (d) Learnt H.

rules1. Furthermore, initializing W and H with non-negative random values, these rules
guarantee that W and H remain non-negative during the entire learning process.

In general, however, NMF factorizations computed in this classical way cannot be as easily
interpreted as the example shown in Figure 10.1b. For example, Figure 10.2 shows a
factorization based on the classical NMF algorithm for the magnitude spectrogram shown
in Figure 10.1b. Here, the initialization of W and H with random values does not lead
to a musically meaningful structure in the computed factorization. Furthermore, the free
parameter K is usually set according to simple rules of thumb that usually do not account
for any musical prior knowledge. As a result, the factorization often becomes completely
unpredictable and lacks clear musical semantics.

1As pointed out by several authors [4,102,197], however, multiplicative rules do not guarantee in general
convergence to a local minimum of the employed distance measure.
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Figure 10.3. NMF factorization resulting from harmonic initialization of the template vectors for
the magnitude spectrogram shown in Figure 10.1. (a) Harmonic initialization of W . (b) Random
initialization of H. (c) Learnt W . (d) Learnt H.

10.1.2 Constraints in NMF

Another important property of multiplicative update rules is that zero-valued entries re-
main zero during the entire learning process. Combined with musically informed initial-
ization schemes, this yields a straightforward way to enforce a specific structure of a
factorization as proposed in [151, 185]. Here, one first creates one template vector for
each possible MIDI pitch. Then, a harmonic structure is imposed by inserting zero-valued
entries into the template initialization at positions where no partial is expected for a given
pitch, see Figure 10.3a. The remaining entries are initialized according to a simplified
overtone model. As we see in Figure 10.3c, the learning process based on multiplicative
rules not only retains this harmonic structure but further refines it such that each template
vector has a clear pitch association. This is a significant gain in structure compared to
the unpredictable results computed via standard NMF as shown in Figure 10.2. However,
looking at the resulting factorization in Figure 10.3c/d reveals that template vectors are
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Figure 10.4. NMF factorization resulting from harmonic initialization of the template vectors
for the magnitude spectrogram shown in Figure 10.1. (a) Random initialization of W . (b) Score-
informed initialization of H. (c) Learnt W . (d) Learnt H.

still often “misused”, for example to represent onsets. This becomes particularly apparent
in the template for MIDI pitch 58, where energy is distributed over a larger number of
frequency bands compared to the other templates (Figure 10.3c). Here, instead of repre-
senting harmonic components of the spectrum, the template is misused to explain parts
of the broadband energy distribution related to onsets. This is also reflected by the short-
term intensity bursts in the corresponding activation row (Figure 10.3d). In the following,
we refer to this initialization strategy as IW.

Alternatively, another possibility is to constrain the activations instead of the template
vectors. To this end, one can mark suitable regions in H where a given pitch is expected
while setting the remaining entries to zero, see Figure 10.4b. This results in a similar
factorization as the one using IW. However, the results depend strongly on the input data.
In our example, several pitches appear only in groups of two, such that the corresponding
template vectors tend to be mixtures of those pitches. However, such conditions usually
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Figure 10.5. NMF factorization resulting from harmonic initialization of the template vectors
and score-informed activation constraints for the magnitude spectrogram shown in Figure 10.1. (a)
Harmonic initialization of W . (b) Score-informed initialization of H. (c) Learnt W . (d) Learnt
H.

do not occur when using more extensive audio material instead of just short snippets. We
refer to this initialization strategy in the following as IH.

Opposed to previous methods, the main idea in this chapter is to constrain both the
template vectors and the activities, see Figure 10.5. As to be expected, such double
constraints lead to an increased stability and robustness of the factorization. While this
will be experimentally shown in Section 10.3, it can also be observed in our example, see
Figure 10.5. Here, almost all template vectors have a well-defined harmonic structure.
We refer to this combined strategy as IWH. Furthermore, the robustness of IWH even
allows for introducing additional template vectors dedicated to describe onsets. This
further stabilizes the factorization and leads to even more meaningful template vectors,
see Figure 10.6. In the next subsection, we describe this strategy, referred to as IOWH, in
more detail.
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Figure 10.6. Extended NMF model with additional onset templates for the magnitude spectro-
gram shown in Figure 10.1. (a) Initialization of harmonic and onset template vectors in W . (b)
Score-informed initialization of the corresponding activations in H. (c) Learnt W . (d) Learnt H.

10.1.3 Proposed Method

Overall, to use strategy IOWH, one needs to suitably initialize onset and harmony template
vectors as well as their activations. After that, only the standard NMF updates rules
have to be applied. For the harmony template vectors, the proposed procedure essentially
follows [151]. To this end, each vector is assigned to a pitch and then initialized such that
only areas around the partials are non-zero. We choose the size of these areas relatively
generous in order to be flexible in dealing with potential inharmonicities of the recorded
instrument or non-standard tunings. More exactly, the area for the n-th partial of pitch
p corresponds to the frequency range (n · f(p−φ), n · f(p+φ)), where φ is a parameter in
semitones to control the size of these areas (we use φ = 1 in the following experiments).
Here, f : R → R≥0 defined by f(p) := 2(p−69)/12 · 440 maps the pitch to the frequency
scale. Furthermore, since the lower partials usually carry most of the energy, we set all
entries in the n-th area to 1/n2, see Figure 10.6a. In a next step, we initialize the onset
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template vectors. Here, opposed to many other approaches, we take into account that the
spectral shape for onsets is for many instruments (including the piano) not the same as
for white noise but depends on the respective pitch with the energy being concentrated
around the partials. Therefore, we use one onset vector for each pitch. Contrary to the
harmonic templates, we do not enforce here any spectral constraints but initialize the
onset templates uniformly and let the learning process derive their shape. To compensate
for this lack of constraints, we apply more rigid restrictions on the activation side.

Next, to meaningfully initialize the activations, the proposed method exploits available
score information given in the form of a MIDI file. Here, instead of unrealistically assuming
that a perfectly aligned MIDI file is available (as it is done in many of the previously
described score-informed source separation methods), we employ the high-resolution music
synchronization approach introduced in Chapter 7 to determine for each MIDI note event
its corresponding position in the audio recording [47]. To impose the activation constraints,
we essentially initialize H to look like a piano roll representation of the synchronized MIDI
file. Starting with the activations for the harmony template vectors, we extract a pitch, as
well as an onset and offset position from each MIDI event. Then, we set the corresponding
entries in H to 1, while all remaining entries are set to zero. To account for possible
alignment inaccuracies that occur using automatic synchronization procedures, we relax
these constraints to some degree. To this end, we additionally set all entries in H in
a tolon-neighborhood around onsets and in a toloff -neighborhood around offsets to 1 (in
our experiments we use tolon = 0.2 seconds and toloff = 1 second). Then, in a final
step, we initialize the activations for the onset template vectors. Here, we place more
strict constraints by only setting entries in a tolon-neighborhood around the MIDI onset
positions to 1, Figure 10.6b.

Comparing the IOWH factorization (Figure 10.6) to the others (Figures 10.2-10.5), we see
that the harmonic vectors of IOWH have the clearest harmonic structure with most partials
being very sharp in frequency direction. Here, a reason is that the percussive broadband
energy is now well-described by the onset vectors, such that onsets have significantly less
disturbing influence on the harmonic vectors. Furthermore, most onset vectors are acti-
vated in an impulse-like manner at the start of note events, which indeed indicates their
use for representing onsets. Overall, making use of double constraints, the initialization
strategy IOWH allows for computing musically meaningful factorizations including a ded-
icated representation of onsets. It combines the expressive power of some parametric
approaches with the efficiency of classic NMF, while still being easy to implement. Fur-
thermore, as shown in the next section, it is robust regarding smaller alignment errors as
well as regarding potential inharmonicities of an instrument or non-standard tunings.

10.2 Separation Process

Next, we employ the NMF factorization based on the IOWH strategy to separate note groups
such as a melody line, the staff of the right hand, a specific motive, or the accompaniment
from a given recording. The only requirement is that the notes to be considered are
somehow specified by the user or by some labeling of the score. Similar to the methods
presented in Chapter 9, we consider here the task of separating the left from the right
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Figure 10.7. Illustration of the separation process for the left and the right hand. (a)/(b):
Partition of the activation matrix H (Figure 10.6d) into HL and HR. (c)/(d): Masking matrices
ML and MR. (e)/(f): Separated spectrograms.

hand staff as specified by a given score as an illustrating example, see Figure 10.7a. While
staffs do not always correspond to musically meaningful note groups, it demonstrates how
note groups could be easily specified in a natural way.

For the separation, we exploit that every non-zero entry in H is associated with a specific
note event, see Figure 10.6d. Therefore, we can partition H into two new matrices HL and
HR, which contain either the activations for the left or the right hand, see Figure 10.7a/b.
A straightforward way to create an audible separation result could be to multiply these two
matrices with the template matrix W , shown in Figure 10.6c, and to invert the resulting
spectrogram. As a tool for approximating the original magnitude spectrogram, however,
NMF-based models usually do not capture every spectral nuance in a given recording.
Therefore, the resulting audio recording would sound rather unnatural.

An alternative to this direct sonification is commonly referred to as masking. Similar to
the separation process described in Section 9.2, one first derives masking matrices via

ML :=
WHL

WH + ǫ
and MR :=

WHR

WH + ǫ
,

where the division is understood point-wise and ǫ is a small positive constant to avoid
a potential division by zero, see Figure 10.7c/d. ML and MR have the same size as the
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original spectrogram V and, having values between 0 and 1, indicate how strongly each
entry in V belongs to either the left or the right hand. Multiplying these masking matrices
point-wisely with V , one obtains a separated spectrogram for the left and the right hand,
see Figure 10.7e/f. Finally, to obtain the separated audio signals, one applies an inverse
DFT in combination with an overlap-add technique to the separated spectrograms. The
necessary phase information is provided by the original spectrogram. This way, masking-
based separation allows for preserving most spectral details of the original recording, which
is important to create acoustically appealing results. However, by filtering the original
audio data, masking may also retain more non-target spectrogram components compared
to a direct sonification.

10.3 Experiments

In this section, we discuss systematically conducted experiments, which illustrate the
potential of the proposed method. To this end, we employ a database consisting of ten
pieces from the Western classical music repertoire. The database consists of four Bach
pieces (mainly inventions) and six Chopin pieces (mainly preludes and mazurkas). For
each piece, the database contains an uninterpreted score-like MIDI file from the Mutopia
Project2 as well as a corresponding audio recording. Here, we use either high-quality audio
recordings from the Saarland Music Database (SMD)3 or digitized versions of historical
recordings from the Piano Society project4. In total, the database contains 24 minutes of
music with each recording having a length between 30 seconds and 5 minutes.

In a first step, we indicate the quality of the proposed method quantitatively using syn-
thetic audio data. To this end, we use the Mutopia MIDI files to create two additional
MIDI files for each piece using only the notes of the left and the right hand, respectively.
Using a wave table synthesizer, we then generate audio recordings from these MIDI files
which are used as ground truth separation results in the following. A linear mix of these
two recordings serves as input for all evaluated separation approaches. For the experiment,
we compute a magnitude spectrogram of the mix and derive a factorization with one of
the methods discussed in Section 10.1. Then, we employ the masking-based separation
procedure as described in Section 10.2 to obtain separated audio signals for the left and
the right hand, respectively.

To assess the quality of a separation result, we employ version 3.0 of the BSSEVAL toolkit
[184] to compute signal-to-distortion (SDR) values. Figure 10.8 shows SDR values for
the initialization strategies IH, IW, IWH and IOWH separately for the left and the right
hand as well as an average for both hands. All values are averaged over the ten pieces
in our database. Note that the SDR values for the right hand are consistently higher
than those for the left hand. Here, the main reason is that the right hand often contains
the main melody and is therefore played louder (level difference is 1.64 dB on average).
As a consequence, there is more energy related to this hand in the mixture making the
separation easier. Furthermore, we see in Figure 10.8 that the strategies IH and IW,

2
http://www.mutopiaproject.org

3
http://www.mpi-inf.mpg.de/resources/SMD/

4
http://pianosociety.com

http://www.mutopiaproject.org
http://www.mpi-inf.mpg.de/resources/SMD/
http://pianosociety.com
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Figure 10.8. Evaluation results given in SDR values for the left (LH) and the right hand (RH)
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Figure 10.9. Evaluation results given in SDR values for several separation approaches varying
the synchronization error.

which initialize only one of the matrices, yield the lowest SDR values. Combining the two
strategies (IWH) we see a significant SDR-gain of almost 1.5 dB. Finally, integrating onset
information leads to another substantial gain of 1.2 dB for the strategy IOWH. Here, the
dedicated representation of the percussive sounds leads to a more coherent representation
of the harmonic parts and consequently to a better separation quality.

To additionally indicate how a typical parametric model (PM) behaves in our scenario, we
also include SDR values for a the approach presented in Chapter 9, here using the spectral
envelope model ϕ2, which models the overtone energy distribution for each pitch separately.
Similar to IWH, this approach only models the harmonic part of a recording, i. e. no onset
model is included, and, indeed, the average SDR values for both approaches are almost
identical (11.3 dB and 11.47 dB SDR, respectively). However, the NMF factorization,
using only simple matrix operations, can be computed more efficiently than the parameter
estimation required for PM and additionally is easier to implement. For example, to
process the whole database consisting of 24 minutes of music, the Matlab implementation
used in these experiments takes about 6 minutes on an Intel W3530 for the synchronization
(5.5 minutes for the chroma feature extraction and 20 seconds for the high-resolution
synchronization), and another 6 minutes for the factorizations using 100 NMF iterations.
Using more optimized implementations [189], both values could be reduced even further.
This is in contrast to the parametric approach, which roughly runs in real-time (excluding
the synchronization step). Other previously proposed approaches even require several
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hours to process this amount of data. Furthermore, the straightforward integration of an
onset model allows for a significant SDR-gain for the IOWH strategy over PM.

Since the MIDI files were perfectly aligned to their sonifications in the first experiment,
we now investigate how the synchronization accuracy affects the separation performance.
To this end, we simulate a low accuracy alignment by shifting each note event randomly
by ±∆ seconds. Figure 10.9 gives the averaged SDR values for the four initialization
strategies and varying values for ∆. Here, we see that all approaches are relatively stable
as long as the synchronization error is not larger than tolon (200ms in our experiments).
Beyond tolon, all SDR values drop significantly. However, it should be noted that even
with very inaccurate onset information the strategy IOWH stays on a similar level as IWH

demonstrating its overall robustness.

While signal-to-distortion ratios and similar evaluation measures can be used to illustrate
some general tendencies, they often do not capture the perceptual separation quality.
Therefore, audible separation results are additionally provided on a website5. Here, real,
non-synthetic audio recordings from the SMD and Piano Society databases are used to give
a realistic and perceptually meaningful impression of the quality of the proposed method
in real world scenarios.

10.4 Conclusions

In this chapter, we have introduced an extended NMF variant that exploits available score
information to guide the factorization. Based on the idea of simultaneously constraining
both the template vectors as well as the activations, the method yields similar results as
a the parametric approach presented in Chapter 9. These results are further improved
by integrating template vectors dedicated to representing onsets. In the future, one could
further extend the idea of double constraining to integrate further model assumptions
into the NMF framework. Furthermore, it would be interesting to apply the proposed
framework to other types of music.

5
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF

http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF
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Chapter 11

Conclusions and Outlook

In recent years many techniques have been developed in the field of music information
retrieval (MIR) that allow users to discover and experience music in large music collections
in an intuitive and efficient manner. In this thesis, we have focused on three central MIR
tasks: music synchronization, audio matching, and source separation. Although these
tasks seem to have little in common at first sight, we have seen that strategies, methods,
and concepts developed for one task also played a central role for the other tasks.

In the first part of the thesis, we focused on the design of chroma-based audio features,
which were important throughout the entire thesis. In retrieval applications such as audio
matching, these features are particularly powerful as they offer a high degree of invariance
to changes in timbre. As one of the main results of the first part of this thesis, we showed
how this robustness can be increased even further. More precisely, inspired by techniques
used in the context of MFCC features, we proposed a novel method that identifies and
discards timbre-related information as part of the feature computation. We demonstrated
the effectiveness of this method using audio matching as an example application. Further-
more, initial results presented in [6, 15, 81, 101] suggest that the proposed CRP features
might also be useful for other applications. However, one should not expect that simply
replacing chroma features by CRP features will lead to measurable performance gains in
all applications. In particular, CRP features were designed for Western tonal music that
is characterized by a prominent harmonic progression. For pieces that are dominated by
percussive sounds, CRP features might fail to capture the harmonic elements. Therefore,
in the future, it might be interesting to incorporate methods for the separation of har-
monic and percussive sounds as a preprocessing step into the feature computation [137].
Furthermore, while the investigations in Section 3.4 have been conducted to analyze the
principles underlying the boost towards timbre invariance, they might also indicate an-
other potential research direction. Here, we have seen that CRP features are dominated
by only a few DCT coefficients. This might be interesting in the context of large scale in-
dexing applications, which benefit strongly from low-dimensional feature representations,
both in terms of efficiency and retrieval quality. Moreover, it would be interesting in the
future to further investigate the potential of PFCC features in music analysis tasks. Using
a pitch- instead of a mel-scale, PFCC features might be better suited to capture musi-
cal timbre than classical speech-oriented MFCC features. Initial results presented in [76]
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indeed indicate a performance gain resulting from the use of PFCC features in a genre
recognition and instrument classification task.

In the second part of the thesis, we then addressed the task of music synchronization. Here,
the chroma features discussed in the first part were of central importance. Similar to the
design of features, we had to account for various musical variabilities in the synchronization
process. To cope with structural differences between the versions to be aligned, we pro-
posed two general strategies. On the one hand, we introduced a late-fusion approach which
employs several conceptually different alignment strategies to identify reliable alignment
parts. On the other hand, we presented a procedure which combines structure analysis
methods with music synchronization techniques to identify corresponding passages within
and across different versions of the same musical work. As we have seen, both approaches
achieve meaningful alignment results even in the presence of significant structural dif-
ferences. Compared to classical global synchronization, however, structure-aware partial
synchronization constitutes a much more challenging research problem. Global music syn-
chronization methods only have to find the best in a set of possible alignments. Partial
synchronization methods additionally have to decide which of these alignments are actu-
ally valid and meaningful. As we have seen, this leads eventually to the decision whether
two given passages should be called similar or not. Finding an answer to this question
solely based on audio features can be a rather ill-defined problem in some cases. So over-
all, music synchronization in the presence of structural differences is still far from being
solved. Further challenges arise in particular from differences in polyphony, for example
when aligning a melody to a version that additionally contains an accompaniment track.
A basic idea to deal with such differences could be to employ classical source separation
techniques to extract some musical sound sources in a first step and to align them indi-
vidually with the score in a second step. However, in this way, the valuable additional
information provided by the score would be useless during the separation process. As an
alternative, it might be more beneficial to investigate novel extensions to score-informed
source separation. In particular, given a score and an audio recording for a piece of music,
one could relax the assumption that the score specifies a note event if and only if there
is a corresponding note event occurring in the audio recording. Overall, this might lead
to interesting questions both in the context of music synchronization and score-informed
source separation.

After addressing the task of partial music synchronization, we focused on classical music
synchronization where the versions to be aligned are assumed to globally correspond to
each other. Here, we have seen that the alignment accuracy of classical chroma-based
approaches often does not suffice to capture fine nuances in tempo. However, such level
of detail is of central importance for tasks such as performance analysis or score-informed
source separation. To further refine the synchronization accuracy, our strategy was to
combine the established chroma features with novel, temporally precise features that in-
dicate onset positions for each chroma separately. As we have seen, the proposed system
inherits the robustness of chroma-based approaches and yields high-precision alignments
whenever clear onset information is available. However, for recordings in which onsets are
less pronounced (string quartets, symphonic pieces), the proposed method was limited to
the accuracy of classical chroma-based approaches. To further stabilize the synchroniza-
tion process in such cases, it would be interesting to investigate new ways to consider the
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temporal context during the alignment. In particular, beat tracking and tempo estima-
tion techniques as well as features describing the local rhythmic information [94] might be
useful to identify potential onset positions.

In the third part, we then employed the synchronization methods developed in the second
part to facilitate a very challenging MIR task: musical source separation. Here, we took
advantage of the fact that large music collections often contain multiple versions or repre-
sentations of a given piece of music. Using synchronization techniques allowed us to align
the various sources of information and to utilize them as a guidance during the separation
process. In particular, we have pursued two approaches. On the one hand, we presented
a parametric spectrogram model, where the underlying idea was to iteratively estimate
musical or acoustical parameters such that the parametric model accurately explains a
given spectrogram. As a second strategy, we introduced a score-informed variant of non-
negative matrix factorization (NMF) with the idea to introduce constraints for both the
NMF templates and their corresponding activities. This even allowed us to incorporate
template vectors representing percussive elements such as onsets. For piano music, both
approaches led to plausible separation results in most cases. Furthermore, we have seen
that the computationally efficient NMF model yielded a similar separation quality as the
more complex parametric model. Additionally, the NMF model allowed for a straightfor-
ward integration of onset information, which gave an additional gain in separation quality.
However, we have not yet answered the question whether these findings also hold for other
types of music. For example, for very complex pieces with a large number of overlapping
sound sources, the NMF-based model might not be as robust as the parametric approach.
The latter offers a stricter enforcement of structure in its signal model. Additionally, it
might also be easier to integrate musical knowledge into a parametric approach or to
capture instrument-specific characteristics such as a vibrato or a specific amplitude pro-
gression. To further enhance the separation quality and robustness of the NMF model for
other types of music, a promising research direction could be to transfer more concepts
and ideas known from parametric models to the NMF model using ideas similar to the
double constraints as presented in Chapter 10.

Furthermore, it would also be interesting to investigate whether the proposed score-
informed source separation methods could be applied in real-time scenarios. To this end,
one could try to combine the online synchronization approaches discussed in Section 7.6
with the methods presented in Part III. To the best of the author’s knowledge, this scenario
has only been considered so far in [35]. However, the authors employ a fixed model for the
overtone energy distribution, which might be too inflexible for general music recordings.
Therefore, it would be interesting to see how adaptive overtone models as presented in
this thesis perform in such a scenario.

In real-time scenarios, efficiency and computational complexity are particularly impor-
tant aspects. While the parameter estimation process as presented in Chapter 9 employs
elaborate numerical optimization methods, it might not be efficient enough for real-time
usage. An interesting research direction therefore could be to take the mathematical prop-
erties of the parametric model more into account to design a high performance parameter
estimation process.
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Based on the techniques developed in Part III, we further presented novel applications
that demonstrated the potential of score-informed source separation. First, we showed
how a previously proposed instrument equalizer can be extended to a general voice equal-
izer which allows for highlighting (or attenuating) arbitrary note groups in a given audio
recording. Here, we have seen that the availability of score information not only stabilizes
the separation process but also allows for a natural and user-friendly way of specifying the
voices or note groups to be separated. Furthermore, we demonstrated how score-informed
source separation methods can be employed for analysis purposes. In particular, given
a polyphonic piano recording, we estimated intensity values capturing the loudness of
individual note events as they occur in the recording. Our evaluation results showed a
significant improvement for the proposed method over a given baseline. For the future, it
will be interesting to explore many more potential applications of score-informed source
separation. For example, the proposed voice equalizer could be further extended such that
the interface not only allows for separating note events but additionally to edit them in
many different ways. Here, one could integrate modules for shifting the pitch, changing
the loudness, modifying the timbre, altering the note length, or inserting and deleting note
events. Exploiting the score information, all of this could be incorporated into an intuitive
interface hiding most technical details from the user.

Furthermore, score-informed source separation could also be employed in novel applica-
tions in the context of performance analysis. For example, instead of analyzing dynamics
in piano recordings as presented in this thesis, one could also analyze the vibrato intensity
in violin recordings or the use of picking and strumming techniques in guitar recordings. In
this context, score-informed source separation techniques constitute a valuable supporting
tool for capturing and analyzing various performance-specific subtleties beyond the score.
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Appendix A

Chroma Toolbox

The feature extraction components described in Chapter 2 and Chapter 3 have been imple-
mented in a chroma toolbox, which is freely available at the well-documented website [17]
under a GNU-GPL license. Table A.1 gives an overview of the main MATLAB functions
along with the most important parameters. Note that there are many more parameters
not discussed in this thesis. However, for all parameters there are default settings so that
none of the parameters need to be specified by the user.

To demonstrate how the toolbox can be applied, we now discuss the code example1 shown
in Table A.2. Our example starts with a call to the function wav_to_audio, which is a
simple wrapper around MATLAB’s wavread.m and converts the input WAV file into a
mono version at a sampling rate of 22050 Hz. Furthermore, the struct sideinfo is returned
containing meta information about the WAV file. In line 3, the audio data is processed
by estimateTuning, which computes an appropriate filter bank shift σ for the recording.
Next, in lines 5–9, Pitch features are computed. Here, the struct paramPitch is used to
pass optional parameters to the feature extraction function. If some parameters or the
whole struct are not set manually, then meaningful default settings are used. This is a
general principle throughout the toolbox. For the pitch computation, winLenSTMSP specifies
the window length in samples. Here, 4410 together with a sampling frequency of 22050
Hz results in a window length corresponding to 200ms of audio. Using half-overlapped
windows leads to a feature rate of 10 Hz. The filterbank shift is specified in line 6 using
the output of estimateTuning. Furthermore, an internal visualization is activated using the
parameter visualize. Then, a call to audio_to_pitch_via_FB results in a 120 × N -matrix
f_pitch that constitutes the Pitch features, where N is the number of time frames and the
first dimension corresponds to MIDI pitches. Actually, only the bands corresponding to
MIDI pitches 21 to 108 are computed and the values of the other bands are set to zero.
Furthermore, details on the feature configuration are appended to the sideinfo struct.
Using sideinfo to store all relevant meta information related to the feature processing
pipeline constitutes a second general principle in our toolbox.

In lines 11–31, various chroma representations are derived from the pitch features. First,
in lines 11–14, CP features are computed. Then, activating the logarithmic compression

1This example is also contained in the toolbox as function demoChromaToolbox.m.
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wav_to_audio
wavread.m
sideinfo
estimateTuning
paramPitch
winLenSTMSP
estimateTuning
visualize
audio_to_pitch_via_FB
f_pitch
sideinfo
sideinfo
demoChromaToolbox.m


142 APPENDIX A. CHROMA TOOLBOX

Filename Main parameters Description

wav_to_audio.m – Import of WAV files and conversion to ex-
pected audio format.

estimateTuning.m pitchRange Estimation of the filterbank shift parame-
ter σ.

audio_to_pitch_via_FB.m winLenSTMSP Extraction of pitch features from audio
data.

pitch_to_chroma.m applyLogCompr,
factorLogCompr =̂ η

Derivation of CP and CLP features from
Pitch features.

pitch_to_CENS.m winLenSmooth =̂ w,
downsampSmooth =̂ d

Derivation of CENS features from Pitch
features.

pitch_to_CRP.m coeffsToKeep =̂ n,
factorLogCompr =̂ η

Derivation of CRP features from Pitch fea-
tures.

smoothDownsampleFeature.m winLenSmooth =̂ w,
downsampSmooth =̂ d

Post-processing of features: smoothing
and downsampling.

normalizeFeature.m p Post-processing of features: ℓp-
normalization (default: p = 2).

visualizePitch.m featureRate Visualization of pitch features.
visualizeChroma.m featureRate Visualization of chroma features.
visualizeCRP.m featureRate Specialized version of visualizeChroma for

CRP features.
generateMultiratePitchFilterbank.m – Generation of filterbanks (used in

audio_to_pitch_via_FB.m).

Table A.1. Overview of the MATLAB functions contained in the chroma toolbox [17].

using applyLogCompr, CLP[100] features are computed in lines 16–20. The compression level
is specified in line 17 by the parameter factorLogCompr, which corresponds to the parameter
η introduced in Section 2.5. Next, in lines 22–26, CENS215 features are computed. Here,
the parameters winLenSmooth and downsampSmooth correspond to the parameters w and d ex-
plained in Section 2.7, respectively. Finally, in lines 28–31, CRP(55) features are computed,
where the parameter n of Section 3.1.2 corresponds to the lower bound of the range speci-
fied by coeffsToKeep, see line 28. Finally, the use of the function smoothDownsampleFeature is
demonstrated, where in lines 33–34 the parameters w and d are specified as for the CENS
computation. At the end of our example, we visualize the smoothed CRP features using
the function visualizeCRP.

wav_to_audio.m
estimateTuning.m
audio_to_pitch_via_FB.m
pitch_to_chroma.m
pitch_to_CENS.m
pitch_to_CRP.m
smoothDownsampleFeature.m
normalizeFeature.m
visualizePitch.m
visualizeChroma.m
visualizeCRP.m
generateMultiratePitchFilterbank.m
audio_to_pitch_via_FB.m
applyLogCompr
factorLogCompr
winLenSmooth
downsampSmooth
coeffsToKeep
smoothDownsampleFeature
visualizeCRP
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1 filename=’Systematic_Chord-C-Major_Eight-Instruments.wav’;

2 [f_audio,sideinfo]=wav_to_audio(’’,’data_WAV/’,filename);

3 shiftFB=estimateTuning(f_audio);

4
5 paramPitch.winLenSTMSP=4410;

6 paramPitch.shiftFB=shiftFB;

7 paramPitch.visualize=1;

8 [f_pitch,sideinfo]=...

9 audio_to_pitch_via_FB(f_audio,paramPitch,sideinfo);

10
11 paramCP.applyLogCompr=0;

12 paramCP.visualize=1;

13 paramCP.inputFeatureRate=sideinfo.pitch.featureRate;

14 [f_CP,sideinfo]=pitch_to_chroma(f_pitch,paramCP,sideinfo);

15
16 paramCLP.applyLogCompr=1;

17 paramCLP.factorLogCompr=100;

18 paramCLP.visualize=1;

19 paramCLP.inputFeatureRate=sideinfo.pitch.featureRate;

20 [f_CLP,sideinfo]=pitch_to_chroma(f_pitch,paramCLP,sideinfo);

21
22 paramCENS.winLenSmooth=21;

23 paramCENS.downsampSmooth=5;

24 paramCENS.visualize=1;

25 paramCENS.inputFeatureRate=sideinfo.pitch.featureRate;

26 [f_CENS,sideinfo]=pitch_to_CENS(f_pitch,paramCENS,sideinfo);

27
28 paramCRP.coeffsToKeep=[55:120];

29 paramCRP.visualize=1;

30 paramCRP.inputFeatureRate=sideinfo.pitch.featureRate;

31 [f_CRP,sideinfo]=pitch_to_CRP(f_pitch,paramCRP,sideinfo);

32
33 paramSmooth.winLenSmooth=21;

34 paramSmooth.downsampSmooth=5;

35 paramSmooth.inputFeatureRate=sideinfo.CRP.featureRate;

36 [f_CRPSmoothed,featureRateSmoothed]=...

37 smoothDownsampleFeature(f_CRP,paramSmooth);

38 parameterVis.featureRate=featureRateSmoothed;

39 visualizeCRP(f_CRPSmoothed,parameterVis);

Table A.2. Code example.

filename = 'Systematic_Chord-C-Major_Eight-Instruments.wav';
[f_audio,sideinfo] = wav_to_audio('', 'data_WAV/', filename);
shiftFB = estimateTuning(f_audio); 
paramPitch.winLenSTMSP = 4410; 
paramPitch.shiftFB = shiftFB; 
paramPitch.visualize = 1; 
[f_pitch,sideinfo] = ... 
audio_to_pitch_via_FB(f_audio,paramPitch,sideinfo);

paramCP.applyLogCompr = 0; 
paramCP.visualize = 1; 
paramCP.inputFeatureRate = sideinfo.pitch.featureRate; 
[f_CP,sideinfo] = pitch_to_chroma(f_pitch,paramCP,sideinfo);
paramCLP.applyLogCompr = 1; 
paramCLP.factorLogCompr = 100; 
paramCLP.visualize = 1; 
paramCLP.inputFeatureRate = sideinfo.pitch.featureRate; 
[f_CLP,sideinfo] = pitch_to_chroma(f_pitch,paramCLP,sideinfo);
paramCENS.winLenSmooth = 21; 
paramCENS.downsampSmooth = 5; 
paramCENS.visualize = 1; 
paramCENS.inputFeatureRate = sideinfo.pitch.featureRate; 
[f_CENS,sideinfo] = pitch_to_CENS(f_pitch,paramCENS,sideinfo);
paramCRP.coeffsToKeep = [55:120]; 
paramCRP.visualize = 1; 
paramCRP.inputFeatureRate = sideinfo.pitch.featureRate; 
[f_CRP,sideinfo] = pitch_to_CRP(f_pitch,paramCRP,sideinfo);

paramSmooth.winLenSmooth = 21; 
paramSmooth.downsampSmooth = 5; 
paramSmooth.inputFeatureRate = sideinfo.CRP.featureRate; 
[f_CRPSmoothed, featureRateSmoothed] = ... 
smoothDownsampleFeature(f_CRP,paramSmooth); 
parameterVis.featureRate = featureRateSmoothed; 
visualizeCRP(f_CRPSmoothed,parameterVis); 


144 APPENDIX A. CHROMA TOOLBOX



Appendix B

Technical Details CRP Evaluation

Chroma-IF
Chroma-P
Chroma-E

chromagram_IF(f_audio,sr,fftlen,nbin,f_ctr,f_sd)

chromagram_P(f_audio,sr,fftlen,nbin,f_ctr,f_sd)

chromagram_E(f_audio,sr,fftlen,nbin,f_ctr,f_sd)

sr = 22050
fftlen = 16384
nbin = 12
f_ctr = 2((60−69)/12) · 440 = 262
f_sd = 1.5
Version: 2007-04-21 14:03:14 (last site update)

As the hopsize was fixed at fftlen/4 we threw away every second
feature vector from the output resulting in a feature rate of 2.7 Hz
(2.7 features per second).

Chroma-Mir mirchromagram(filename,’Frame’,1,0.5)

Version: 1.1

Chroma-QM sonic-annotator -t chroma.n3 -w csv filename

step_size = 11025
block_size = 16384
sample_rate = 22050
bpo = 12
minpitch = 21
maxpitch = 108
normalization = 1
tuning = 440

Version: 1.6

Table B.1. Configuration of the reference chroma implementations used in Chapter 3: Each
feature extractor was configured to produce similar output as the baseline implementation (Chroma-
Pitch), which produces 12 dimensional chroma vectors with a feature rate of 2 Hz and using the
pitch range between MIDI Pitch 21 to 108. If the configurability of a feature extractor was limited
we tried to approximate these settings as closely as possible. After feature extraction all features
were normalized using the Euclidean norm.
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chromagram_IF(f_audio,sr,fftlen,nbin,f_ctr,f_sd)
chromagram_P(f_audio,sr,fftlen,nbin,f_ctr,f_sd)
chromagram_E(f_audio,sr,fftlen,nbin,f_ctr,f_sd)
sr
fftlen
nbin
f_ctr
f_sd
mirchromagram(filename,'Frame',1,0.5)
sonic-annotator
-t
chroma.n3
-w
csv
filename
step_size
block_size
sample_rate
bpo
minpitch
maxpitch
normalization
tuning
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Composer/
Artist

Title / Opus Query Rec. Occ.

Brahms Hungarian Dances 05 Part A 2 6
Shostakovich JazzSuite2 6 Waltz2 Main Theme 2 8
Ravel Bolero Main Theme 2 18
Bach BWV565 toccataOrgan Beginning 3 3
Schumann Traeumerei Main Theme 3 9
Wagner Meistersinger Prelude Beginning 2 2
Beethoven Op. 67 (5th Symphony) Secondary theme 5 15
Coldplay In my place Stanza + Stanza + Chorus 2 4
Indigo Girls Free in you Stanza + Chorus 2 6
Genesis That’s all Chorus 3 9
Queen We are the champions Stanza 3 6
Beatles Yesterday Stanza + Chorus 2 4
Gloria Gaynor I will survive Main theme 1 11

Total 32 101

Table B.2. Database used in the experimental section of Chapter 3. As the number of query
occurrences varied between the pieces we averaged the results per piece in a first step and then
over the whole database in a second step. This way, pieces with many occurrences do not dominate
the results presented in Chapter 3.
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[86] Cyril Joder, Slim Essid, and Gaël Richard. Optimizing the mapping from a symbolic to an
audio representation for music-to-score alignment. In Proceedings of the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 121–124, New
Paltz, NY, USA, 2011.

[87] Cyril Joder, Felix Weninger, Florian Eyben, David Virette, and Björn Schuller. Real-time
speech separation by semi-supervised nonnegative matrix factorization. In Proceedings of
the International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA),
Tel Aviv, Israel, 2012.

[88] Hirokazu Kameoka, Takuya Nishimoto, and Shigeki Sagayama. Harmonic-temporal-
structured clustering via deterministic annealing EM algorithm for audio feature extraction.
In Proceedings of the International Conference on Music Information Retrieval (ISMIR),
pages 115–122, London, GB, 2005.



BIBLIOGRAPHY 153

[89] Min-Yen Kan, Ye Wang, Denny Iskandar, Tin Lay Nwe, and Arun Shenoy. LyricAlly: Au-
tomatic synchronization of textual lyrics to acoustic music signals. IEEE Transactions on
Audio, Speech, and Language Processing, 16(2):338–349, 2008.

[90] Anssi P. Klapuri. Multipitch analysis of polyphonic music and speech signals using an
auditory model. IEEE Transactions on Audio, Speech, and Language Processing, 16(2):255–
266, 2008.

[91] Anssi P. Klapuri, Antti J. Eronen, and Jaakko Astola. Analysis of the meter of acoustic
musical signals. IEEE Transactions on Audio, Speech and Language Processing, 14(1):342–
355, 2006.

[92] Verena Konz, Meinard Müller, and Sebastian Ewert. A multi-perspective evaluation frame-
work for chord recognition. In Proceedings of the International Society for Music Information
Retrieval Conference(ISMIR), pages 9–14, Utrecht, The Netherlands, 2010.

[93] Lucas Kovar and Michael Gleicher. Flexible automatic motion blending with registration
curves. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation (ACM-SCA), pages 214–224, Aire-la-Ville, Switzerland, 2003.

[94] Frank Kurth, Thorsten Gehrmann, and Meinard Müller. The cyclic beat spectrum: Tempo-
related audio features for time-scale invariant audio identification. In Proceedings of the 7th
International Conference on Music Information Retrieval (ISMIR), pages 35–40, Victoria,
Canada, 2006.

[95] Frank Kurth and Meinard Müller. Efficient index-based audio matching. IEEE Transactions
on Audio, Speech, and Language Processing, 16(2):382–395, 2008.

[96] Frank Kurth, Meinard Müller, Christian Fremerey, Yoon ha Chang, and Michael Clausen.
Automated synchronization of scanned sheet music with audio recordings. In Proceedings of
the 8th International Conference on Music Information Retrieval (ISMIR), pages 261–266,
Vienna, Austria, 2007.

[97] Olivier Lartillot and Petri Toiviainen. MIR in Matlab (II): A toolbox for musical feature
extraction from audio. In Proceedings of the International Conference on Music Information
Retrieval (ISMIR), pages 127–130, Vienna, Austria, 2007.

[98] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In
Proceedings of the Neural Information Processing Systems (NIPS), pages 556–562, Denver,
CO, USA, 2000.

[99] Kyogu Lee and Malcolm Slaney. Acoustic chord transcription and key extraction from audio
using key-dependent HMMs trained on synthesized audio. IEEE Transactions on Audio,
Speech, and Language Processing, 16(2):291–301, 2008.

[100] Fred Lerdahl and Ray Jackendoff. A Generative Theory of Tonal Music. MIT Press, 1983.

[101] Cynthia C.S. Liem and Alan Hanjalic. Expressive timing from cross-performance and audio-
based alignment patterns: An extended case study. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR), pages 519–524, Miami, USA,
2011.

[102] Chih-Jen Lin. On the convergence of multiplicative update algorithms for nonnegative matrix
factorization. IEEE Transactions on Neural Networks, 18:1589–1596, 2007.

[103] Beth Logan. Mel frequency cepstral coefficients for music modeling. In Proceedings of the In-
ternational Symposium on Music Information Retrieval (ISMIR), Plymouth, Massachusetts,
2000.



154 BIBLIOGRAPHY

[104] Robert Macrae and Simon Dixon. Accurate real-time windowed time warping. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR), pages 423–
428, Utrecht, Netherlands, 2010.

[105] Robert Macrae and Simon Dixon. A guitar tablature score follower. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME), pages 725–726, Singapore,
2010.

[106] Robert Macrae, Joachim Neumann, Xavier Anguera, Nuria Oliver, and Simon Dixon. Real-
time synchronisation of multimedia streams in a mobile device. In Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME), pages 1–6, Barcelona, Spain,
2011.

[107] Namunu C. Maddage. Automatic structure detection for popular music. IEEE Multimedia,
13(1):65–77, 2006.

[108] Namunu C. Maddage, Changsheng Xu, Mohan S. Kankanhalli, and Xi Shao. Content-based
music structure analysis with applications to music semantics understanding. In Proceedings
of the ACM International Conference on Multimedia, pages 112–119, New York, NY, USA,
2004.

[109] Akira Maezawa, Hiroshi G. Okuno, Tetsuya Ogata, and Masataka Goto. Polyphonic audio-
to-score alignment based on bayesian latent harmonic allocation hidden markov model. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 185–188, Prague, Czech Republic, 2011.

[110] Matthias Mauch and Simon Dixon. Simultaneous estimation of chords and musical context
from audio. IEEE Transactions on Audio, Speech, and Language Processing, 18(6):1280–1289,
2010.

[111] Matthias Mauch, Hiromasa Fujihara, and Masataka Goto. Integrating additional chord in-
formation into HMM-based lyrics-to-audio alignment. IEEE Transactions on Audio, Speech,
and Language Processing, 20(1):200–210, 2012.

[112] John H. Maxwell. An expert system for harmonic analysis of tonal music. In Understanding
Music with AI, pages 335–353. MIT Press, 1992.

[113] MIREX 2010. Audio Chord Estimation Subtask. http://www.music-ir.org/mirex/wiki/
2010:Audio_Chord_Estimation, Retrieved 17.09.2010.

[114] Nicola Montecchio and Arshia Cont. A unified approach to real time audio-to-score and
audio-to-audio alignment using sequential Montecarlo inference techniques. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 193–196, Prague, Czech Republic, 2011.

[115] Brian C. J. Moore, Brian R. Glasberg, and Thomas Baer. A model for the prediction
of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society,
45(4):224–240, 1997.

[116] Meinard Müller. Information Retrieval for Music and Motion. Springer Verlag, 2007.

[117] Meinard Müller and Daniel Appelt. Path-constrained partial music synchronization. In
Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 65–68, Las Vegas, Nevada, USA, 2008.

[118] Meinard Müller and Michael Clausen. Transposition-invariant self-similarity matrices. In
Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR),
pages 47–50, Vienna, Austria, 2007.

http://www.music-ir.org/mirex/wiki/2010:Audio_Chord_Estimation
http://www.music-ir.org/mirex/wiki/2010:Audio_Chord_Estimation


BIBLIOGRAPHY 155

[119] Meinard Müller, Michael Clausen, Verena Konz, Sebastian Ewert, and Christian Fremerey.
A multimodal way of experiencing and exploring music. Interdisciplinary Science Reviews
(ISR), 35(2):138–153, 2010.

[120] Meinard Müller and Sebastian Ewert. Joint structure analysis with applications to music
annotation and synchronization. In Proceedings of the International Conference on Music
Information Retrieval (ISMIR), pages 389–394, Philadelphia, Pennsylvania, USA, 2008.

[121] Meinard Müller and Sebastian Ewert. Towards timbre-invariant audio features for harmony-
based music. IEEE Transactions on Audio, Speech, and Language Processing, 18(3):649–662,
2010.

[122] Meinard Müller and Sebastian Ewert. Chroma Toolbox: MATLAB implementations for
extracting variants of chroma-based audio features. In Proceedings of the International Soci-
ety for Music Information Retrieval Conference (ISMIR), pages 215–220, Miami, FL, USA,
2011.

[123] Meinard Müller, Sebastian Ewert, and Sebastian Kreuzer. Making chroma features more
robust to timbre changes. In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 1869–1872, Taipei, Taiwan, 2009.

[124] Meinard Müller, Verena Konz, Wolfgang Bogler, and Vlora Arifi-Müller. Saarland music
data (SMD). In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR): Late Breaking session, 2011.

[125] Meinard Müller, Verena Konz, Andi Scharfstein, Sebastian Ewert, and Michael Clausen. To-
wards automated extraction of tempo parameters from expressive music recordings. In Pro-
ceedings of the International Society for Music Information Retrieval Conference (ISMIR),
pages 69–74, Kobe, Japan, 2009.

[126] Meinard Müller and Frank Kurth. Enhancing similarity matrices for music audio analysis.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 437–440, Toulouse, France, 2006.

[127] Meinard Müller and Frank Kurth. Towards structural analysis of audio recordings in the
presence of musical variations. EURASIP Journal on Advances in Signal Processing, 2007(1),
2007.

[128] Meinard Müller, Frank Kurth, and Michael Clausen. Audio matching via chroma-based
statistical features. In Proceedings of the International Conference on Music Information
Retrieval (ISMIR), pages 288–295, 2005.

[129] Meinard Müller, Frank Kurth, David Damm, Christian Fremerey, and Michael Clausen.
Lyrics-based audio retrieval and multimodal navigation in music collections. In Proceedings
of the 11th European Conference on Digital Libraries (ECDL), pages 112–123, Budapest,
Hungary, 2007.
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Non-negative matrix factorization (NMF), 122
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Note intensity estimation, 116

Parametric spectrogram model, 106
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tuning, 107
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Particle filtering, 92
Path-constrained similarity, 68
Pitch features, see Features
Pitch filterbank, 12
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Smoothed cost matrix, 44
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