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ABSTRACT
In this paper, we present an automatic approach for aligning speech signals to corresponding text documents.
For this sake, we propose to first use text-to-speech synthesis (TTS) to obtain a speech signal from the textual
representation. Subsequently, both speech signals are transformed to sequences of audio features which are
then time-aligned using a variant of greedy dynamic time-warping (DTW). The proposed approach is both
efficient (with linear running time), computationally simple, and does not rely on a prior training phase as
it is necessary when using HMM-based approaches. It benefits from the combination of a) a novel type of
speech feature, being correlated to the phonetic progression of speech, b) a greedy left-to-right variant of
DTW, and c) the TTS-based approach for creating a feature representation from the input text documents.
The feasibility of the proposed method is demonstrated in several experiments.

1. INTRODUCTION

Textual information can be available in various forms and
document types addressing different modalities such as
plain text files (e.g., transcripts), scans of printed text
(i.e., images), or spoken language (i.e., speech record-
ings). The merging and cross-form linkage (or align-
ment) of different documents embodying the same or
at least—to some degree—similar content leads to new
possibilities such as cross-modal search, merged presen-
tation, and interlocked navigation. Therefore, the auto-
mated discovery of semantic cross-connections between
different documents is an important and highly valuable
task. In this paper, we deal with the interrelation of plain
text files and speech recordings, each of which describe
the same abstract information, but on a different modal-
ity. The aim is then to find a temporal alignment—i.e.,
a cross-modal linkage of semantically equivalent docu-
ment parts—between the documents.

We consider three application scenarios benefiting from
such a linkage. First, the cross-modal linkage is utilized
to play back text and an audio recording of the text in
a karaoke-like style, i.e., to time-synchronously display
single words corresponding to the currently played part
of the audio. Second, we use the text representation for

navigation purposes, i.e., scrolling through the text while
automatically changing the audio playback position by
selecting a word in the text document. Third, in a query-
retrieval setting, a text-based search not only provides the
exact places of occurrence within a particular text docu-
ment but gives also the corresponding parts within asso-
ciated audio documents by exploiting the cross-linkage.

To build up a system enabling such types of application
scenarios, i.e., text-to-speech synchronization, two main
steps are required. In a first step, information from a
given pair of documents consisting of a text document
and a corresponding audio recording are analyzed. In a
second step, the resulting information is then used to es-
tablish a time-alignment between the documents. To de-
velop a reliable and efficient method, a detailed analysis
of these two steps is required.

In this paper, we propose to use text-to-speech (TTS) to
obtain an audio recording from a text representation, to-
gether with a subsequent audio–audio alignment based
on a greedy DTW algorithm applied to feature represen-
tations obtained from the audio. The proposed method
benefits from the combination of (a) suitable feature rep-
resentations, (b) a greedy window-wise DTW strategy,
and (c) the utilization of a TTS system for the synthe-
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sizing of speech recordings. Fig. 1 shows an overview
of this process. The results of the proposed method are
illustrated using four different test document pairs cover-
ing different scenarios in two languages: (1) “Prolog im
Himmel” from the introduction of Goethe’s Faust (ger-
man language), (2) the poem “The Raven” by Edgar
Allen Poe (english language), (3) a Wikipedia article
about Germany (german language), and (4) a part of John
F. Kennedy’s famous speech “Ich bin ein Berliner” deliv-
ered on June 26, 1963 in West Berlin, Germany (english
language).

The rest of this paper is organized as follows. Sect. 2
gives a detailed examination of the audio feature repre-
sentation used in the context of this work. In Sect. 3,
the greedy window-wise variant of DTW is intro-
duced. Sect. 4 employs the practical evaluation and de-
tailed analysis of our proposed synchronization method.
Sect. 5 closes the paper with a conclusion and gives some
prospects on future work. Related work is discussed in
the respective subsection.

2. LOCAL PHRASE MATCHING AND PARA-
METRIC AUDIO FEATURES

In this section, we present suitable features reflecting the
phoneme progression in human speech independently of
a particular speaker. These features especially meet some
invariance w.r.t. speaker-individual articulation, pronun-
ciation, and intonation.

As a standard in speech processing, mel-frequency cep-
stral coefficients (MFCCs) have widely been used as fea-
tures in automatic speech recognition (ASR) which is the
task of extracting spoken text. Furthermore, as MFCCs
represent detail characteristics of individual speakers,
they are also common in speaker recognition, which is
the task of recognizing people from their voices. The lat-
ter property also means that MFCCs are rather sensitive
to varying speakers or voices and thus less suitable for
our targeted task.

In previous research, Skrowronski et al. [17] proposed
human factor cepstral coefficients (HFCCs) which turned
out to outperform classical MFCC features for the task of
robust phoneme and speech recognition independently of
the speaker. The HFCC extraction process generalizes
the well-known MFCC extraction process by introduc-
ing an additional degree of freedom regarding the con-
struction of the underlying filterbank. Whereas the filters
of the classical MFCC filterbank have bandwidths deter-
mined by the center frequencies of the adjacent bands,

Figure 1: Schematic overview of the method used in this
paper.

the authors propose to choose the bandwidth of a sin-
gle filter independently of the other bands. A particu-
lar choice which was successfully applied to ASR con-
sists of selecting the bandwidth of the mel-spaced filters
according to the bark scale of human perception [17].
Fig. 2 illustrates this difference between MFCC- (top)
and HFCC-based (bottom) filterbanks for the case of 16
frequency bands (the number of 16 was choosen for sake
of illustration only).

In our recent research [18], we picked up the idea of con-
trolling the used filters individually and independently
from each other, and additionally postprocessed the re-
sulting features by computing short-time energy nor-
malized statistics (ENS). By this process, besides the
spectral properties of a speech signal, also the tempo-
ral evolution of the spoken phrases is taken into ac-
count. This idea has been adopted from earlier research,
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Figure 2: Comparison of MFCC- (top) and HFCC-
filterbanks (bottom) with 16 bands. While the MFCCs
bandwidths are determined by the centers of the neigh-
boring filters, the HFCC-bandwidths are choosen inde-
pendently.

where the inclusion of the time axis contributes a cru-
cial level of robustness required for the identification of
similar music snippets using audio matching [10]. Alto-
gether, empirical tests showed that the resulting features
are less speaker dependent and more robustly capture the
phoneme progression in a sequence of spoken words. We
recently employed these features successfully to unsu-
pervised keyphrase spotting, i.e., the detection of short
sequences of spoken words in a given speech signal [19].

The proposed process for extracting parametric audio
features is shown in Fig. 3. Here, the front-end (frame-
based spectral analysis) and back-end processing (decor-
relating DCT) coincide with the well-known MFCC
feature-extraction. More precisely, to compute classi-
cal mel frequency cepstral coefficients (MFCCs), an in-
put signal is processed by a short time Fourier transform
(STFT) with a block length of 20 ms and step size of 10
ms. Then, center frequencies f1, . . . , f40 are choosen ac-
cording to the mel scale of human pitch perception. For a
fixed frame and 16 j 6 J, let X( j) denote the j-th STFT-
coefficient. Using triangular windows ∆k centered at the
( fk)k, spectral smoothing is performed yielding 40 mel-
scale components M(k) = ∑

J
j=1 ∆k( j) · |X( j)|, 1 6 k 6

40. To decorrelate the vector (M(1), . . . ,M(40)) approx-
imately, a discrete cosine transform (DCT) is applied as
a back-end processing step yielding m = DCT ·M. De-

Figure 3: Detailed overview of creating features from
given audio data by a filterbank approach.

pending on the application, only the K-most significant
coefficients mK = (m(1), . . . ,m(K)) are retained for fur-
ther processing (classically K = 12). For MFCCs, the
bandwidths of the triangular filters are determined by the
spacing of the center frequencies fk, cf. Fig. 2 (top).

To construct parametric audio features, the mel-
filterbank is replaced by a general filterbank which is
specified by

(i) the total frequency range,

(ii) the number of filters in this range,

(iii) the spacing of the center frequencies, and

(iv) the bandwidths of the filters.

In the special case of MFCCs, common choice are (i) a
frequency range of 6500 Hz with (ii) 20–40 filters which
are (iii) spaced according to the mel-scale, where (iv)
the bandwidth of the i-th filter extends from the center
frequency of filter (i− 1) to that of filter (i + 1). For
HFCCs, only the bandwidths (iv) are exchanged and se-
lected according to the Bark scale of critical bandwidths.
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Figure 4: Classical dynamic time warping (DTW) of
naturally spoken and synthetized wave files using an
HFCC-ENS-based feature representation.

More precisely, the width of the bark-filter at frequency
f , measured in equivalent rectangular bandwidth (ERB),
is given by E( f ) = 6.23 f 2 + 93.39 f + 28.52 Hz [17]. In
summary, those frequency parameters allow us to control
the spectral feature resolution.

In a subsequent process of calculating ENS, we first
perform an energy normalization followed by a feature-
based (component-wise) quantization of the filter bands.
For normalization, the vector M is basically replaced
by a normalized version M/∑

40
k=1 |M(k)|. The subse-

quent quantization in principle generalizes the log-scale
compression performed in the MFCC feature-extraction.
For our keyphrase-spotting application [19], we use a
coarse discrete 5-step quantizer Q : [0,1]→{0,1,2,3,4}
which is roughly logarithmic while at the same time be-
ing adapted to capture the energy-rich characteristics of
phoneme transitions.

Afterwards, smoothing and downsampling of the result-
ing feature sequence allows us to adapt the temporal res-
olution of the features by choosing both the smoothing
window size and the target feature resolution as temporal
parameters. In our experiments, smoothing is performed
by a Hann window. The features produced after the final
DCT step will be called FBCC-ENS.

3. TEXT-TO-SPEECH ALIGNMENT

In this section, the discriminative power [19] of the fea-

ture variants described in the last section is exploited for
the text-to-speech alignment task. Given a position in the
text file, the task is to determine the corresponding posi-
tion in the audio recording. The result can be regarded as
an automated annotation of the audio recording with the
given textual information.

Overall, most text-to-speech alignment techniques can
be summarized in one of three different ways. A first cat-
egory consists of approaches based on Hidden Markov
Models (HMMs), e.g., [16]. Here, the basic idea is to
model the sequence of words given by the text by creat-
ing one Markov state for each phoneme occurrence in the
text and allow only one-way transitions between these
states. The result is a first-order Markov model. Next,
one needs observation probabilities for each state that de-
scribe the probability to observe a certain feature vector
when the state is active. These probabilities are usually
modelled with Gaussian mixture models (GMMs) and
the associated parameters are usually estimated using
supervised learning techniques. Finally, the alignment
is computed using the Viterbi algorithm that determines
the sequence of states that best explain the audio feature
sequence observed. However, the used GMMs have to
be learned from practice—oftentimes an impractible ap-
proach that further leads to very complex systems and
complicates the analysis. For these reasons, we avoid an
HMM-based approach in the context of our application
scenario.

A second category of alignment approaches comprise
methods that combine ASR techniques with text-to-text
alignment methods, see for example [7]. Since ASR
is much harder to solve than text-to-speech alignment,
these approaches usually have to incorporate rather com-
plex ASR systems to achieve a similar alignment accu-
racy as methods from the first category. Furthermore, the
recognition accuracy of ASR is often insufficient. Es-
pecially in the case of low-quality audio recordings, one
has to deal with a high error rate of not correctly recog-
nized words resulting in many local mismatches thus a
poor alignment. Therefore, we do not use a correspond-
ing approach here.

In the third category one finds methods based on dy-
namic time warping (DTW) in combination with text-
to-speech synthesis, e.g. see [13]. Here, the basic idea
is to synthesize a speech recording using the given text.
Then, a feature sequence derived from the original au-
dio is compared to a sequence derived from the syn-
thesized audio resulting in a cost matrix C. More pre-
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Figure 5: Window-wise computation of global DTW path by means of multiple computations of DTW sub-paths,
each of which corresponding to a window. (a) shows paths for the first two windows, (b) shows a part of the overall
path, constructed from sub-paths (a), and (c) elucidates the process for longer files (in this case approximately 10
minutes).

cisely, let X := (x1,x2, . . . ,xN) and Y := (y1,y2, . . . ,yM)
denote the feature sequences for the original and the syn-
thesized recording, respectively. Then, an N ×M cost
matrix C is built up by evaluating a local cost measure c
for each pair of features, i. e., C((n,m)) = c(xn,ym) for
n ∈ [1 : N] := {1,2, . . . ,N} and m ∈ [1 : M]. Each tuple
p = (n,m) is called a cell of the matrix. A (global) align-
ment path is a sequence (p1, . . . , pL) of length L with
p` ∈ [1 : N]× [1 : M] for ` ∈ [1 : L] satisfying p1 = (1,1),
pL = (N,M) and p`+1− p` ∈ Σ for ` ∈ [1 : L−1]. Here,
Σ = {(1,0),(0,1),(1,1)} denotes a set of admissible step
sizes. The cost of a path (p1, . . . , pL) is defined as
∑

L
`=1 C(p`). A cost-minimizing alignment path, which

constitutes the final alignment result, can be computed
via dynamic programming from C ([15]), see Fig. 4.

On the one hand, this third approach offers the algorith-
mic simplicity to concentrate on the comparison of dif-
ferent feature variants. On the other hand, we found it to
work very well for many examples we encountered in our
experiments. Hence this approach is used subsequently.

As with N ≈ M, the memory requirements of DTW are
quadratic in the length of the feature sequences. It is
impossible to align very long audio recordings such as
parts of Wikipedia’s article about Germany with a length
of over 20 minutes. To overcome this limitation, several
approaches have been proposed [14, 12, 8, 9]. All trade
the guarantee to find the globally optimal path off against

a raise in computational efficiency.

In this paper, we follow a simple greedy strategy illus-
trated in Fig. 5. We start by computing C and a global
alignment path p1 = (p1

1, . . . , p1
L1) in a small window, see

Fig. 5a. Next, we move the window and set its origin
to p1

bL1/2c. The path p2 = (p2
1, . . . , p2

L2) computed in this
window is used to specify the origin of the next window,
see Fig. 5b. Continuing this strategy and combining all
path fragments finally leads to a global path on C, see
Fig. 5c. Overall, this approach does not guarantee that
the globally optimal path is computed. However, using
a window size of about 45 seconds, we could not find
an example where the global path was different from the
path computed using our window technique.

4. EVALUATION

According to the method described in the last sections
and especially in Fig. 1, we tested the quality of our
approach on some “real-world” data with some exper-
imental synchronizations. Therefore we selected four
text samples which exist both as a text file and as a
recorded speech sound file. As feature representations
for use within the synchronization algorithm we took into
consideration three different feature settings, namely an
MFCC-ENS-, an HFCC-ENS- and an FBCC-ENS-based
feature characterization, cf. Fig 6. The feature sequences
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Figure 6: Comparison of (a) MFCC-ENS-, (b) HFCC-ENS-, and (c) FBCC-ENS-based feature representations (top
rows), and respective local cost matrices along with their warping paths (bottom row).

in this figure are generated, respectively, from a 1.37 sec-
onds long (real speech) and a 1.41 seconds long (synthe-
sized speech) excerpt of text example faust (“Schein des
Himmelslichts”).

Performing these experiments consisted of the following
five steps:

(i) First, the text is split up into phrases. A phrase is
a short sentence or a subordinate clause. With re-
gard to the importance of intonation we cannot syn-
thesize word-for-word, but handling large sentences
at a time will result in a bad time resolution. Cur-
rently, sentences as such are detected automatically,
but subordinate clauses have to be taken into pieces
manually.

(ii) Each phrase is processed as a whole by the TTS
system. We used a commercial TTS system (“In-
fovox Desktop” by Acapela Group gave good re-
sults), and for simplicity we saved only starting
points and durations (in milliseconds) of the phrases

within the synthetized wave file. We call this in-
formation phrase time information and write pti(Tn)
for the n-th phrase of text T .

(iii) A human listener created the ground truth by de-
tecting the (nearly) exact phrase information in the
wave files.

(iv) Three settings, an MFCC-ENS-, an HFCC-ENS-
and an FBCC-ENS-based feature representation as
shown in Fig 6, are used for synchronization. For
each phrase n with phrase time information pti(Tn)
we save the corresponding timestamps pti(Tn,F) for
F ∈ {MFCC-ENS, HFCC-ENS, FBCC-ENS}.

(v) As a last step, we computed the warping path and
got the corresponding starting points in the origi-
nal file. These timestamps were compared to the
ground truth. The temporal aberration of phrase
n when synchronized using the features f with
respect to the ground truth gT of T is defined
as err(Tn,F) := ptisp(Tn,F)− ptisp(Tn,gT ) where
ptis p denotes the starting point information of pti.
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As text examples, we choose the following four different
text pieces:

1. faust (german): “Prolog im Himmel” from the in-
troduction of Goethe’s Faust (audio file was down-
loaded from YouTube [6], text was taken from Wik-
isource [3]); length: 302.59 seconds, 700 words in
107 phrases,

2. theraven (english): The poem “The Raven” by
Edgar Allen Poe (audio file [4] and text [5] were
downloaded from Wikisource); length: 548.66 sec-
onds, 1125 words in 108 phrases,

3. wikipedia (german): The Wikipedia article about
Germany [2] spoken by a professional female reader
and recorded in the context of the “WikiProject Spo-
ken Wikipedia” [1]; length: 1214.83 seconds, 1997
words in 141 phrases,

4. kennedy (english): A part of John F. Kennedy’s
speech “Ich bin ein Berliner” delivered on June 26,
1963 in West Berlin; length: 164.83 seconds, 264
words in 30 phrases.

Within the synchronization algorithm, all features were
implemented using the following parameters (cf. also
Fig 3): winsize 60-80 ms, downsampling factor 1, and
hopsize 12-15 ms. Our former experiments have shown
that using those we are supposed to get the best results.

Figure 7: Coherence of (a) warping path and (b) error
description err(Tn,F). The bars in (b) indicate the ab-
solute temporal aberration in seconds between the real
alignment (given as a ground truth by human listener)
and the computed warping path.

Fig. 7 depicts an intuitive way of the illustration of the
synchronization error. For each phrase n and feature set-
ting f , the error err(Tn,F) is positive if the synchronized
version is too fast, and negative if it is too slow. This

kind of illustration will be used for our subsequent anal-
ysis. (cf. Fig. 8)

For each text piece T from the list above using F-based
feature representations, the table below shows the aver-
age temporal aberration (in seconds) of synchronization
Eerr(T,F) := ∑

#phrases
n=1 |err(Tn,F)|.

Text MFCC-ENS HFCC-ENS FBCC-ENS
faust 5.8838 0.1727 0.5778
theraven 4.5045 0.3382 0.2729
wikipedia 18.0044 0.2650 0.2121
kennedy 7.8580 9.1938 2.3885

Table 1: Mean temporal aberration Eerr(T,F) (in sec-
onds) of synchronization using different feature repre-
sentations

Detailed results are plotted in Fig. 8. One can observe
the large errors whenever MFCC-ENS based features are
used. But the greedy window-wise DTW approach is
able to handle some of these: the occurring cumulative
errors at faust and theraven vanishes over time. Hence
we noted that even if leaving the environment of the cor-
rect warping path the synchronization may find the cor-
rect alignment in further synchronization.

Using FBCC-ENS features, we got a large error at the
end of faust—certainly, this appeared as a delay of one
single word only after a 10 seconds pause in recorded
speech. Similarly, the short intervals between theraven’s
staves caused some noticeable delays even if the HFCC-
ENS-based features are used. Other errors are quite
small and concerned the positions of one or two words
at most.

Furthermore one observes that a synchronization of John
F. Kennedy’s speech was not possible by using any of the
features settings above. We assume that this is a result of
the totally different intonation of a public speech which
is typically very tonal and exhibits many unusual word
stretchings, pronunciation, and repeated words. Our ap-
proach seems to fail on this type of audio source.

The synchronization of all the other texts performed
quite well using HFCC-ENS and FBCC-ENS features;
not so using MFCC-ENS. Seemingly, these depend too
much on the particular speaker (cf. [19]) to perform a
synchronization between a real spoken text and a synthe-
sized version of the same words. Even choosing a com-
puter’s voice of the same gender as the original text’s
speaker did not reduce this problem.
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Figure 8: Overview of the temporal aberrations err(Tn,F) for different texts pieces T (rows) and different kinds of
feature based representation F (column). For an explanation of the graphical error depiction, see Fig. 7

Using HFCC-ENS-based features obviously avoids this
problem because these features outperform classical
MFCC features for the taste of speech recognition inde-
pendently of the speaker.

Our FBCC-ENS configuration consists of six bands only
(by way of comparison, MFCC-ENS- and HFCC-ENS
configurations consist of 40 bands) but occasioned sur-
prisingly good results. Their average error is slightly
smaller than those of the HFCC-ENS-based synchroniza-
tion. However, as Kennedy’s speech exhibits and one can
observe in the graphical representation of the cost matrix

in Fig 6, they are quite structurally weak compared with
the many-banks supported features like MFCC-ENS or
HFCC-ENS. Hence we assume that the strong drift of the
computed warping path to the cost matrix’ diagonal—
which is typical for DTW—leads to some of the good
results observed.

We selected a very short window length due to the fast
changes between similar phoneme characteristics. This
denies the development of macroscopic structures which
may be observed in musical data. Especially, application
of MFCC-ENS features with parameters as used in mu-
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Figure 9: SyncPlayer with text viewer plug-in.

sic synchronization like winsize 400 ms, downsampling
factor 2, and hopsize 20 ms is not possible.

For demonstration purposes, the SyncPlayer framework
[11] was used for the time sychronous highlighting of the
spoken phrase during the playback of the naturally spo-
ken wave file, see Fig. 9. Our synchronization method
described in the evaluation section created an XML file
containing the phrases together with the pti information.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method for the synchroniza-
tion of a given text document and a real speech record-
ing, both representing the same textual content. For this
purpose, we follow the approach of aligning sequences
of audio features derived from both input sources. Our

approach combines three ingredients: First, the local
comparison involved in the alignment step relies on au-
dio feature sequences gained from both the real speech
recording and a version synthesized from the text. This
approach has been adopted from the area of music syn-
chronization. Second, we pursue a greedy window-wise
DTW strategy. Here, the overall alignment path is com-
posed of partial DTW paths. Each of these are calculated
on the basis of excerpts taken from the real and syn-
thesized speech recordings, respectively. Multiple cal-
culations of DTW paths of small snippets of the speech
recordings are performed block-wise in a sliding window
manner. The block-wise processing bypasses the de-
manding time and space complexity of a single “global”
DTW on the whole speech recordings—a great draw-
back as speech recordings are frequently of a compar-
atively long time duration—and allows for the alignment
of speech recordings of arbitrary lengths. Third, a TTS
system is utilized to synthesize speech recordings from
given text documents, where the output of the TTS sys-
tem constitutes the basis for the audio feature extraction
process. We used the TTS-based approach with a subse-
quent alignment of audio feature sequences instead of us-
ing an ASR-based approach with a subsequent alignment
of text representations, because in the case of low-quality
speech recordings especially, the latter approach poten-
tially leads to a high error rate resulting in a poor align-
ment. In our research, we evaluated several TTS systems
and discovered that the output quality of the used TTS
system significantly affects feature matching quality and
thus the reliability and accuracy of the alignment. The
TTS system we finally used for our tests achieved signif-
icantly better results than others.

We examined how well specific feature types are suit-
able for the task of text synchronization. The simplicity
of our DTW-based approach provides a detailed analysis
of the characteristics without interference of a very com-
plex alignment procedure such as HMM-based. Our ap-
proach does not rely on supervised learning techniques,
i.e., the system need not to be trained—a big advantage
as generating good training data is a time-consuming
task. Various experiments showed that the alignment is
quite reliable, accurate and robust as long as the text doc-
ument and speech recording do not differ much in con-
tent. Since we achieved good results with our greedy
window-wise DTW strategy and no training, we believe
our approach is attractive for the outlined application
scenario.
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The poor time resolution problem and manual phrase de-
tection discussed in Sect. 4, steps (i) and (ii), is subject to
later improvement by detecting a word time information
while using the TTS.
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